RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      운동과 뇌신경가소성 : 고강도 인터벌 운동의 효과성 고찰

      한글로보기

      https://www.riss.kr/link?id=A101742415

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      운동은 중추와 말초의 각종 성장인자(BDNF, IGF-1, VEGF)들의 상호작용에 의해 뇌신경가소성을 증진시키고 인지기능을 향상시킨다. 지금까지 저·중강도 지속성 유산소 운동의 효과를 검증하는 ...

      운동은 중추와 말초의 각종 성장인자(BDNF, IGF-1, VEGF)들의 상호작용에 의해 뇌신경가소성을 증진시키고 인지기능을 향상시킨다. 지금까지 저·중강도 지속성 유산소 운동의 효과를 검증하는 선행연구가 주로 이루어졌기 때문에 고강도 운동에 따른 뇌신경성장인자의 발현 및 인지기능 개선 효과에 대한 연구는 미흡한 실정이다. 하지만 최근의 과학적 증거들은 고강도 인터벌 운동이 시간 효율성, 안전성, 심폐지구력 개선 및 체중 감소에 효과적임을 암시하고 있으며, 미스포츠의학회(ACSM)에서 권장하는 일반인을 위한 운동지침에서도 무리가 되지 않는 수준에서 고강도 인터벌 운동 수행을 강조하고 있다. 특히 최근에 발표된 선행 연구에서 고강도 인터벌 운동은 말초조직과 뇌에서의 BDNF, IGF-1, VEGF의 발현을 증가시키고 그로 인한 인지기능 발달에 기여한다는 것을 보고하였으며, 관련된 유력한 생리학적 기전으로 고강도 인터벌 운동으로 인한 뇌의 저산소화와 뇌신경대사의 부가적인 에너지원이 될 수 있는 젖산 이용성 증가가 대두되고 있다. 따라서 향후 저산소화 및 젖산 이용성 증가에 따른 뇌신경성장인자 발현 개선에 어떤 분자생물학적 기전이 관여하는지를 탐구할 필요가 있으며, 또한 동일한 운동량을 가진 저·중강도 지속성 유산소 운동과의 비교 연구를 통해 뇌신경성장인자의 발현 및 인지기능 개선에 있어 고강도 인터벌 운동의 우수성을 입증하는 연구가 요구된다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Exercise increases the expression and interaction of major neurotrophic factors such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF) at both central and peripheral tissue...

      Exercise increases the expression and interaction of major neurotrophic factors such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF) at both central and peripheral tissues, which contributes to improved brain and neural plasticity and cognitive function. Previous findings have been to understand the effect of light or moderate intensity aerobic exercise on neurotrophic factors and cognitive function, not that of high intensity aerobic exercise. However, recent findings suggest that high intensity interval training is a safe, less time-consuming, efficient way to improve cardiorespiratory fitness and weight control, thus American College of Sport Medicine (ACSM)’s guidelines for exercise prescription for various adult populations also recommend the application of high intensity interval training to promote their overall health. High intensity interval training also enhances the expression of BDNF, IGF-1, and VEGF at the brain and peripheral tissues, which improves cognitive function. Increased frequency of intermittent hypoxia and increased usage of lactate as a supplementary metabolic resource at the brain and neural components are considered a putative physiological mechanism by which high intensity interval training improves neurotrophic factors and cognitive function. Therefore, future studies are required to understand how increased hypoxia and lactate usage leads to the improvement of neurotrophic factors and what the related biological mechanisms are. In addition, by comparing with the iso-caloric moderate continuous exercise, the superiority of high intensity interval training on the expression of neurotrophic factors and cognitive function should be demonstrated by associated future studies.

      더보기

      목차 (Table of Contents)

      • 서론
      • 운동과 인지기능
      • 운동과 뇌성장인자
      • 고강도 운동과 젖산 그리고 저산소화
      • 결론
      • 서론
      • 운동과 인지기능
      • 운동과 뇌성장인자
      • 고강도 운동과 젖산 그리고 저산소화
      • 결론
      • References
      • 초록
      더보기

      참고문헌 (Reference)

      1 Ratey, J. J., "The positive impact of physical activity on cognition during adulthood: a review of underlying mechanisms, evidence and recommendations" 22 : 171-185, 2011

      2 Huang, T., "The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans:A review" 24 : 1-10, 2014

      3 Ferris, L. T., "The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function" 39 : 728-734, 2007

      4 Wang, H., "Secretion of brain-derived neurotrophic factor from brain microvascular endothelial cells" 23 : 1665-1670, 2006

      5 Cetinkaya, C., "Positive effects of aerobic exercise on learning and memory functioning, which correlate with hippocampal IGF-1 increase in adolescent rats" 549 : 177-181, 2013

      6 Paul, D. L., "Physical activity and the brain: A review of this dynamic, bi-directional relationship" 1539 : 95-104, 2013

      7 Haskell, W. L., "Physical activity and public health: updated recommendation for adults from American College of Sports Medicine and the American Heart Association" 39 : 1423-1434, 2007

      8 Ruscheweyh, R., "Physical activity and memory functions: and interventional study" 32 : 1304-1319, 2011

      9 Poo, M. M, "Neurotrophins as synaptic modulators" 2 : 24-32, 2001

      10 Tonoli, C., "Neurotrophins and cognitive functions in T1D compared with healthy controls: effects of a high intensity exercise" 40 : 20-27, 2015

      1 Ratey, J. J., "The positive impact of physical activity on cognition during adulthood: a review of underlying mechanisms, evidence and recommendations" 22 : 171-185, 2011

      2 Huang, T., "The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans:A review" 24 : 1-10, 2014

      3 Ferris, L. T., "The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function" 39 : 728-734, 2007

      4 Wang, H., "Secretion of brain-derived neurotrophic factor from brain microvascular endothelial cells" 23 : 1665-1670, 2006

      5 Cetinkaya, C., "Positive effects of aerobic exercise on learning and memory functioning, which correlate with hippocampal IGF-1 increase in adolescent rats" 549 : 177-181, 2013

      6 Paul, D. L., "Physical activity and the brain: A review of this dynamic, bi-directional relationship" 1539 : 95-104, 2013

      7 Haskell, W. L., "Physical activity and public health: updated recommendation for adults from American College of Sports Medicine and the American Heart Association" 39 : 1423-1434, 2007

      8 Ruscheweyh, R., "Physical activity and memory functions: and interventional study" 32 : 1304-1319, 2011

      9 Poo, M. M, "Neurotrophins as synaptic modulators" 2 : 24-32, 2001

      10 Tonoli, C., "Neurotrophins and cognitive functions in T1D compared with healthy controls: effects of a high intensity exercise" 40 : 20-27, 2015

      11 Phillips, C., "Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling" 170 : 1-15, 2014

      12 Voss, M. W., "Neurobiologycal markers of exercise-related brain plasticity in older adults" 28 : 90-99, 2013

      13 Wagner P. D., "Muscle-targeted deletion of VEGF and exercise capacity in mice" 151 : 159-166, 2006

      14 Timmons, J. A., "Modulation of extracellular matrix genes reflects the magnitude of physiological adaptation to aerobic exercise training in humans" 3 : 19-, 2005

      15 Yang, J., "Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons" 111 : 12228-12233, 2014

      16 Larrebee, M. G, "Lactate metabolism and its effects on glucose metabolism in an exercised neural tissue" 64 : 1734-1741, 1995

      17 Schiffer, T., "Lactate infusion at rest increases BDNF blood concentration in humans" 488 : 234-237, 2011

      18 Quistorff, B., "Lactate fuels the human brain during exercise" 22 : 3443-3449, 2008

      19 Maren, S. K., "Kinetics of serum brain-derived neurotrophic factor following low-intensity versus high-intensity exercise in men and women" 23 : 889-893, 2012

      20 Bergersen, L. H, "Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle" 145 : 11-19, 2007

      21 Whiteman, A. S., "Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults" 259 : 302-312, 2014

      22 Lopez-Lopez, C., "Insulin-like growth factor I is required for vessel remodeling in the adult brain" 101 : 9833-9838, 2004

      23 Ding, Q., "Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function" 140 : 823-833, 2006

      24 Wyss, M. T., "In vivo evidence for lactate as a neuronal energy source" 31 : 7477-7485, 2011

      25 Pareja-Galeano, H., "Impact of exercise training on neuroplasticity-related growth factors in adolescents" 13 : 368-371, 2013

      26 Hoppeler, H., "Hypoxia training for sea-level performance. Training high-living low" 502 : 61-73, 2001

      27 Colier, W. N., "Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot" 129 : 457-461, 1999

      28 Cassiman, D., "Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors" 33 : 148-158, 2001

      29 Lou, S. J., "Hippocampal neurogenesis and gene expression depend on exercise intensity in juvenile rats" 1210 : 48-55, 2008

      30 Vayman, S., "Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition" 20 : 2580-2590, 2004

      31 Winter, B., "High impact running improves learning" 87 : 597-609, 2007

      32 Sonntag, W. E., "Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging" 4 : 195-212, 2005

      33 Colcombe, S., "Fitness effects on the cognitive function of older adults: a meta-analytic study" 14 : 125-130, 2003

      34 Cotman, C. W., "Exercise: a behavioral intervention to enhance brain health and plasticity" 25 : 295-301, 2002

      35 Gregory, S. M., "Exercise-induced insulin-like growth factor I system concentrations after training in women" 45 : 420-428, 2013

      36 Gustafsson, T., "Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle" 276 : H679-H685, 1999

      37 Hoier, B., "Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF" 21 : 301-314, 2014

      38 Tang, K., "Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle" 170 : 16-22, 2010

      39 Erickson, K. I., "Exercise training increases size of hippocampus and improves memory" 108 : 3017-3022, 2011

      40 Berchtold, N. C., "Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus" 133 : 853-861, 2005

      41 Cotman, C. W., "Exercise builds brain health: key roles of growth factor cascades and inflammation" 30 : 464-472, 2007

      42 Neeper, S. A., "Exercise and brain neurotrophins" 373 : 109-, 1995

      43 Tsai, C. L., "Executive function and endocrinological responses to acute resistance exercise" 8 : 262-, 2014

      44 Rasmussen, P., "Evidence for a release of brain-derived neurotrophic factor from the brain during exercise" 94 : 1062-1069, 2009

      45 Monteggia, L. M., "Essential role of brain-derived neurotrophic factor in adult hippocampal function" 101 : 10827-10832, 2004

      46 Zoladz, J. A., "Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men" 59 : 119-132, 2008

      47 Coco, M., "Elevated blood lactate is associated with increased motor cortex excitability" 27 : 1-8, 2010

      48 Suzuki, J., "Effects of treadmill training on the arteriolar and venular portions of capillary in soleus muscle of young and middle-aged rats" 159 : 113-121, 1997

      49 Borst, S. E., "Effects of resistance training on insulin-like growth factor-I and IGF binding proteins" 33 : 648-653, 2001

      50 Rooks, C. R., "Effects of incremental exercise on cerebral oxygenation measured by near-infared spectroscopy: A systematic review" 92 : 134-150, 2010

      51 Wahl, P., "Effects of acid-base balance and high or low intensity exercise on VEGF and bFGF" 111 : 1405-1413, 2011

      52 Zanconato, S., "Effect of training and growth hormone suppression on insulin-like growth factor I mRNA in young rats" 76 : 2204-2209, 1994

      53 Gavin, T. P., "Effect of short-term exercise training on angiogenic growth factor gene responses in rats" 90 : 1219-1226, 2001

      54 Juel, C., "Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle" 286 : E245-E251, 2003

      55 Pilegaard, H., "Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle" 276 : E255-E261, 1999

      56 Lezi, E., "Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation" 35 : 2574-2583, 2014

      57 Wahl, P., "Effect of high- and low-intensity exercise and metabolic acidosis on levels of GH, IGF-I, IGFBP-3 and cortisol" 5 : 380-385, 2010

      58 Schwartz, A. J., "Effect of brief low- and high-intensity exercise on circulating insulin-like growth factor (IGF) I, II, and IGF-binding protein-3 and its proteolysis in young healthy men" 81 : 3492-3497, 1996

      59 Cappon, J., "Effect of brief exercise on circulating insulin-like growth factor I" 76 : 2490-2496, 1994

      60 Greer, B. K., "EPOC comparison between isocaloric bouts of steady-state aerobic, intermittent aerobic, and resistance training" 86 : 190-195, 2015

      61 Afzalphuor, M. E., "Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain" 147 : 78-83, 2015

      62 Trejo, J. L., "Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus" 21 : 1628-1634, 2001

      63 Carro, E., "Circulating insulin-like growth factor I mediates effects of exercise on the brain" 20 : 2926-2933, 2000

      64 Barbieri, M., "Chronic Inflammation and the effect of IGF-1 on muscle strength and power in older persons" 284 : E481-E487, 2003

      65 Ide, K., "Cerebral metabolic response to submaximal exercise" 87 : 1604-1608, 1999

      66 Rasmussen, P., "Cerebral glucose and lactate consumption during cerebral activation by physical activity in humans" 25 : 2865-2873, 2011

      67 Hofer, M. M., "Brain-derived neurotrophic factor prevents neuronal death in vivo" 331 : 261-262, 1988

      68 Hotting, K., "Beneficial effects of physical exercise on neuroplasticity and cognition" 37 : 2243-2257, 2013

      69 Breen, E. C., "Angiogenic growth factor mRNA responses in muscle to a single bout of exercise" 81 : 355-361, 1996

      70 Pereira, A. C., "An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus" 104 : 5638-5643, 2007

      71 Kramer, A. F., "Ageing, fitness and neurocognitive function" 400 : 418-419, 1999

      72 Colcombe, S. J., "Aerobic exercise training increases brain volume in aging humans" 61 : 1166-1170, 2006

      73 Griffin, E. W., "Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males" 104 : 934-941, 2011

      74 Erickson, K. I., "Aerobic exercise effects on cognitive and neural plasticity in older adults" 43 : 22-24, 2009

      75 Dery, N., "Adult hippocampal neurogenesis reduces memory interference in humans: opposing effects of aerobic exercise and depression" 7 : 66-, 2013

      76 Brunelli, A., "Acute exercise modulates BDNF and pro-BDNF protein content in immune cells" 44 : 1871-1880, 2012

      77 Skriver, K., "Acute exercise improves motor memory: Exploring potential biomarkers" 116 : 46-58, 2014

      78 RojasVega, S., "Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans" 1121 : 59-65, 2006

      79 Wahl, P., "Active vs. passive recovery during high-intensity training influences hormonal response" 35 : 583-589, 2014

      80 DeVol, D. L., "Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth" 259 : E89-E95, 1990

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-08-03 학술지명변경 외국어명 : Korean Journal of Life Science -> Journal of Life Science KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.37 0.37 0.42
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.43 0.43 0.774 0.09
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼