RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      퍼지 ART에서 잡음 여유도를 개선하기 위한 새로운 학습방법의 연구 = A Study on the New Learning Method to Improve Noise Tolerance in Fuzzy ART

      한글로보기

      https://www.riss.kr/link?id=A100583974

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper presents a new learning method for a noise tolerant Fuzzy ART. In the conventional Fuzzy ART, the top-down and bottom-up weight vectors have the same value. They are updated by a fuzzy AND operation between the input vector and the current value of the top-down or bottom- up weight vectors. However, it can not prevent the abrupt change of the weight vector and can not achieve good performance for a noisy input vector. To solve the problems, we updated using the weighted sum of the input vector and the current value of the top-down vector. To achieve stability, the bottom-up weight vector is updated using the fuzzy AND operation between the newly learned top-down vector and the current value of the bottom-up vector. Computer simulations show that the proposed method prominently resolves the category proliferation problem without increasing the training epoch for stabilization in noisy environments.
      번역하기

      This paper presents a new learning method for a noise tolerant Fuzzy ART. In the conventional Fuzzy ART, the top-down and bottom-up weight vectors have the same value. They are updated by a fuzzy AND operation between the input vector and the current ...

      This paper presents a new learning method for a noise tolerant Fuzzy ART. In the conventional Fuzzy ART, the top-down and bottom-up weight vectors have the same value. They are updated by a fuzzy AND operation between the input vector and the current value of the top-down or bottom- up weight vectors. However, it can not prevent the abrupt change of the weight vector and can not achieve good performance for a noisy input vector. To solve the problems, we updated using the weighted sum of the input vector and the current value of the top-down vector. To achieve stability, the bottom-up weight vector is updated using the fuzzy AND operation between the newly learned top-down vector and the current value of the bottom-up vector. Computer simulations show that the proposed method prominently resolves the category proliferation problem without increasing the training epoch for stabilization in noisy environments.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼