RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Multi-Objective Particle Swarm Optimization: An Introduction

      한글로보기

      https://www.riss.kr/link?id=A100439913

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In the real world, reconciling a choice between multiple conflicting objectives is a common problem. Solutions to a multi-objective problem are those that have the best possible negotiation given the objectives. An evolutionary algorithm called Particle swarm optimization is used to find a solution from the solution space. It is a population-based optimization technique that is effective, efficient, and easy to implement. Changes in the particle swarm optimization technique are required in order to get solutions to a multi-objective optimization problem. Therefore, this paper provides the proper concept of particle swarm optimization and the multi-objective optimization problem in order to build a basic background with which to conduct multi-objective particle swarm optimization. Then, we discuss multi-objective particle swarm optimization concepts. Multi-objective particle swarm optimization techniques and some of the most important future research directions are also included.
      번역하기

      In the real world, reconciling a choice between multiple conflicting objectives is a common problem. Solutions to a multi-objective problem are those that have the best possible negotiation given the objectives. An evolutionary algorithm called Partic...

      In the real world, reconciling a choice between multiple conflicting objectives is a common problem. Solutions to a multi-objective problem are those that have the best possible negotiation given the objectives. An evolutionary algorithm called Particle swarm optimization is used to find a solution from the solution space. It is a population-based optimization technique that is effective, efficient, and easy to implement. Changes in the particle swarm optimization technique are required in order to get solutions to a multi-objective optimization problem. Therefore, this paper provides the proper concept of particle swarm optimization and the multi-objective optimization problem in order to build a basic background with which to conduct multi-objective particle swarm optimization. Then, we discuss multi-objective particle swarm optimization concepts. Multi-objective particle swarm optimization techniques and some of the most important future research directions are also included.

      더보기

      목차 (Table of Contents)

      • Abstract
      • Introduction
      • Particle Swarm Optimization
      • Multi-Objective Optimization Problem
      • Multi-Objective Particle Swarm Optimization
      • Abstract
      • Introduction
      • Particle Swarm Optimization
      • Multi-Objective Optimization Problem
      • Multi-Objective Particle Swarm Optimization
      • Future Research Directions
      • Conclusions
      • References
      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼