RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      비선형 매니폴드 학습을 이용한 얼굴 이미지 합성 = Face Image Synthesis using Nonlinear Manifold Learning

      한글로보기

      https://www.riss.kr/link?id=A82294132

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      얼굴 구성 요소 각각에 대한 파라미터로부터 특정한 포즈나 표정을 갖는 얼굴 이미지를 합성하는 방법을 제안한다. 이러한 파라미터화는 얼굴 이미지의 표현과 저장, 전송을 효과적으로 수행할 수 있도록 한다. 그러나 얼굴 이미지의 변화는 고차원의 이미지 공간에서 복잡한 비선형 매니폴드를 구성하기 때문에 파라미터화 하는 것이 쉽지 않다. 이러한 문제점을 해결하기 위해, 얼굴 이미지에 대한 표현방법으로 LLE (Locally Linear Embedding) 알고리즘을 사용한다. LLE 알고리즘은 얼굴 이미지들 사이의 관계를 유지하면서 저차원의 특징 공간으로 투사된 매니폴드를 더욱 부드럽고 연속적으로 만들어준다. 그 다음, 특징공간에서 특정한 포즈나 표정 파라미터에 해당하는 포인트를 추정하기 위해 snake 모델을 적용한다. 마지막으로, 추정된 특징 값의 주변에 있는 여러 장의 얼굴 이미지들의 가중치 평균을 구해 합성된 결과이미지를 만든다. 실험결과를 통해 제안된 방법을 이용하면 겹침 현상이 적고 포즈나 표정에 대한 파라미터의 변화와 일치하는 이미지를 합성한다는 것을 보인다.
      번역하기

      얼굴 구성 요소 각각에 대한 파라미터로부터 특정한 포즈나 표정을 갖는 얼굴 이미지를 합성하는 방법을 제안한다. 이러한 파라미터화는 얼굴 이미지의 표현과 저장, 전송을 효과적으로 수...

      얼굴 구성 요소 각각에 대한 파라미터로부터 특정한 포즈나 표정을 갖는 얼굴 이미지를 합성하는 방법을 제안한다. 이러한 파라미터화는 얼굴 이미지의 표현과 저장, 전송을 효과적으로 수행할 수 있도록 한다. 그러나 얼굴 이미지의 변화는 고차원의 이미지 공간에서 복잡한 비선형 매니폴드를 구성하기 때문에 파라미터화 하는 것이 쉽지 않다. 이러한 문제점을 해결하기 위해, 얼굴 이미지에 대한 표현방법으로 LLE (Locally Linear Embedding) 알고리즘을 사용한다. LLE 알고리즘은 얼굴 이미지들 사이의 관계를 유지하면서 저차원의 특징 공간으로 투사된 매니폴드를 더욱 부드럽고 연속적으로 만들어준다. 그 다음, 특징공간에서 특정한 포즈나 표정 파라미터에 해당하는 포인트를 추정하기 위해 snake 모델을 적용한다. 마지막으로, 추정된 특징 값의 주변에 있는 여러 장의 얼굴 이미지들의 가중치 평균을 구해 합성된 결과이미지를 만든다. 실험결과를 통해 제안된 방법을 이용하면 겹침 현상이 적고 포즈나 표정에 대한 파라미터의 변화와 일치하는 이미지를 합성한다는 것을 보인다.

      더보기

      다국어 초록 (Multilingual Abstract)

      This paper proposes to synthesize facial images from a few parameters for the pose and the expression of their constituent components. This parameterization makes the representation, storage, and transmission of face images effective. But it is difficult to parameterize facial images because variations of face images show a complicated nonlinear manifold in high-dimensional data space. To tackle this problem, we use an LLE (Locally Linear Embedding) technique for a good representation of face images, where the relationship among face images is preserving well and the projected manifold into the reduced feature space becomes smoother and more continuous. Next, we apply a snake model to estimate face feature values in the reduced feature space that corresponds to a specific pose and/or expression parameter. Finally, a synthetic face image is obtained from an interpolation of several neighboring face images in the vicinity of the estimated feature value. Experimental results show that the proposed method shows a negligible overlapping effect and creates an accurate and consistent synthetic face images with respect to changes of pose and/or expression parameters.
      번역하기

      This paper proposes to synthesize facial images from a few parameters for the pose and the expression of their constituent components. This parameterization makes the representation, storage, and transmission of face images effective. But it is diffic...

      This paper proposes to synthesize facial images from a few parameters for the pose and the expression of their constituent components. This parameterization makes the representation, storage, and transmission of face images effective. But it is difficult to parameterize facial images because variations of face images show a complicated nonlinear manifold in high-dimensional data space. To tackle this problem, we use an LLE (Locally Linear Embedding) technique for a good representation of face images, where the relationship among face images is preserving well and the projected manifold into the reduced feature space becomes smoother and more continuous. Next, we apply a snake model to estimate face feature values in the reduced feature space that corresponds to a specific pose and/or expression parameter. Finally, a synthetic face image is obtained from an interpolation of several neighboring face images in the vicinity of the estimated feature value. Experimental results show that the proposed method shows a negligible overlapping effect and creates an accurate and consistent synthetic face images with respect to changes of pose and/or expression parameters.

      더보기

      목차 (Table of Contents)

      • 요약
      • Abstract
      • 1. 서론
      • 2. 이론적 배경
      • 3. LLE 기반의 이미지 합성
      • 요약
      • Abstract
      • 1. 서론
      • 2. 이론적 배경
      • 3. LLE 기반의 이미지 합성
      • 4. 실험 결과 및 고찰
      • 5. 결론
      • 참고문헌
      • 저자소개
      더보기

      참고문헌 (Reference)

      1 "Unsupervised Learning using Locally Linear Embedding: Experiments with Face Pose Analysis" 2002.

      2 "Tools cut data down to size" March,2001.

      3 "Think Globally, Fit Locally: Unsupervised Learning of Nonlinear Manifolds"

      4 "Snakes: A Active Contour Models" (1) : 321 -331, 1998.

      5 "Pattern Classification" A Wiley-Interscience Publication 2001.

      6 "Nonlinear Image Interpolation using Manifold Learning" 7 : 1995.

      7 "Nonlinear Dimensionality Reduction by Locally Linear Embedding" 290 (290): 2323-2326, 2000.

      8 "Matrix Computations" The Johns Hopkins University Press 1996.

      9 "Marchine Vision" McBraw -Hill 1995.

      10 "Facial Analysis and Synthesis Using Image-Based Models" 116 -121, October1996.

      1 "Unsupervised Learning using Locally Linear Embedding: Experiments with Face Pose Analysis" 2002.

      2 "Tools cut data down to size" March,2001.

      3 "Think Globally, Fit Locally: Unsupervised Learning of Nonlinear Manifolds"

      4 "Snakes: A Active Contour Models" (1) : 321 -331, 1998.

      5 "Pattern Classification" A Wiley-Interscience Publication 2001.

      6 "Nonlinear Image Interpolation using Manifold Learning" 7 : 1995.

      7 "Nonlinear Dimensionality Reduction by Locally Linear Embedding" 290 (290): 2323-2326, 2000.

      8 "Matrix Computations" The Johns Hopkins University Press 1996.

      9 "Marchine Vision" McBraw -Hill 1995.

      10 "Facial Analysis and Synthesis Using Image-Based Models" 116 -121, October1996.

      11 "Dynamic Vision(From Images to Face Recognition)" Imperial College Press 2000.

      12 "A Global Geometric Framework for Nonlinear Dimensionality Reduction" 290 (290): 2319 -2322, 2000.

      13 "A Fast Algorition for Active Contours and Curvature Eistimation" 1426-, 1992.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2014-09-01 평가 학술지 통합(기타)
      2013-04-26 학술지명변경 한글명 : 정보과학회논문지 : 소프트웨어 및 응용</br>외국어명 : Journal of KIISE : Software and Applications KCI등재
      2011-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2008-10-17 학술지명변경 한글명 : 정보과학회논문지 : 소프트웨어 및 응용</br>외국어명 : Journal of KISS : Software and Applications KCI등재
      2007-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정(등재후보2차) KCI등재
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼