RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Steam reforming of n-dodecane over K<sub>2</sub>Ti<sub>2</sub>O<sub>5</sub>-added Ni-alumina and Ni-zirconia (YSZ) catalysts

      한글로보기

      https://www.riss.kr/link?id=A107501068

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>The steam reforming of n-dodecane over 35 wt% Ni supported on alumina (Ni-Al2O3) and yttrium-stabilized zirconia (Ni-YSZ) at 800 degrees C for 10 h with a steam-to-carbon ratio of 3 was tested in the presence and absence of 10 wt% of K2Ti2O5 ...

      <P>The steam reforming of n-dodecane over 35 wt% Ni supported on alumina (Ni-Al2O3) and yttrium-stabilized zirconia (Ni-YSZ) at 800 degrees C for 10 h with a steam-to-carbon ratio of 3 was tested in the presence and absence of 10 wt% of K2Ti2O5 (KTO) particles. The suppression of coke formation by KTO was investigated using various characterizations, including BET, TPO, TGA, TEM, and EELS. After the addition of 10 wt% of KTO particles by ball milling, Ni-YSZ exhibited stable performance with negligible coke formation at space velocities of less than 20,000 h(-1). The addition of KTO to Ni-Al2O3 did not yield any improvements because the majority of Ni particles in alumina pores are not directly in contact with the KTO phase. The dispersion of finely divided KTO particles on the surfaces of both Ni and the support effectively suppressed coke formation by steam gasification of the deposited coke into CO and H-2. First, the gradual accumulation of coke during the course of the reaction deactivated the Ni sites, which presented activity for the steam reforming of methane. The Ni and acidic sites, which were effective for the hydrogenolysis of n-dodecane to methane and ethylene (or ethane in the presence of KTO), were eventually deactivated. An overall reaction pathway was then proposed based on the results. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼