RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      음성 인식을 위한 다중 심층 신경망 병렬 학습 = Parallel training for deep neural network based speech recognizers

      한글로보기

      https://www.riss.kr/link?id=T14549345

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      The hybrid deep neural Network (DNN) and hidden Markov model (HMM) have recently achieved great performance in speech recognition. However, the computing hardware was not adequate to learn deep neural networks with more hidden layers from big data sets. Further, despite the powerful performance of a DNN-based acoustic model, the time-consuming learning process has been a problem. This paper proposes a novel DNN-based acoustic modeling framework for speech recognition. The new model adopts parallel training in multiple DNNs. Several hierarchically structured DNNs are trained separately in parallel, using multiple computing units. Weights are averaged after each epoch. The suggested structure separates DNN into 10 and shows approximately 7.5 times faster in training time than baseline hybrid deep neural network. This improvement in average training time is mainly attributed to the use of multiple GPUs and the fact that training is based on only a subset of data in parallel. The WSJ data set was used for proposed parallel DNN performance verification.
      번역하기

      The hybrid deep neural Network (DNN) and hidden Markov model (HMM) have recently achieved great performance in speech recognition. However, the computing hardware was not adequate to learn deep neural networks with more hidden layers from big data set...

      The hybrid deep neural Network (DNN) and hidden Markov model (HMM) have recently achieved great performance in speech recognition. However, the computing hardware was not adequate to learn deep neural networks with more hidden layers from big data sets. Further, despite the powerful performance of a DNN-based acoustic model, the time-consuming learning process has been a problem. This paper proposes a novel DNN-based acoustic modeling framework for speech recognition. The new model adopts parallel training in multiple DNNs. Several hierarchically structured DNNs are trained separately in parallel, using multiple computing units. Weights are averaged after each epoch. The suggested structure separates DNN into 10 and shows approximately 7.5 times faster in training time than baseline hybrid deep neural network. This improvement in average training time is mainly attributed to the use of multiple GPUs and the fact that training is based on only a subset of data in parallel. The WSJ data set was used for proposed parallel DNN performance verification.

      더보기

      목차 (Table of Contents)

      • 목 차
      • 제 1 장 서론 1
      • 제 2 장 관련 연구 4
      • 2.1 Multi-layer perceptron(MLP) 4
      • 목 차
      • 제 1 장 서론 1
      • 제 2 장 관련 연구 4
      • 2.1 Multi-layer perceptron(MLP) 4
      • 2.2 Error backpropagation 9
      • 2.3 Pre-training and fine-tuning 13
      • 2.3.1 Deep Belief Network 14
      • 제 3 장 DNN의 병렬 학습 방법 22
      • 3.1 Model parallelism 23
      • 3.2 Data parallelism 27
      • 3.3 제안하는 parallel DNN 학습 방법 30
      • 제 4 장 실험 및 결과 35
      • 4.1 실험 환경 35
      • 4.2 실험 결과 37
      • 4.2.1 Baseline DNN-HMM 37
      • 4.2.2 제안하는 방법 39
      • 제 5 장 결론 및 향후 과제 44
      • 부록 A. 최적의 epoch 설정 46
      • 참고 문헌 49
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼