RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Study on Wear Prediction of Shield Disc Cutter in Hard Rock and Its Application

        Zhenyong Wang,Chenglong Liu,Yusheng Jiang,Linwei Dong,Shixian Wang 대한토목학회 2022 KSCE JOURNAL OF CIVIL ENGINEERING Vol.26 No.3

        It is important to enable the prediction of disc cutter wear during shield tunnelling through hard rock because such wear is associated with project delays and increased costs. Based on a theoretical analysis of Archard’s wear mechanism and Euler’s rotation theorem, a displacement equation of rock-breaking point A on the disc cutter ring is studied, and then a new wear prediction model is established combined with the theoretical analysis of the disc cutter force and wear test. The cutter wear prediction model is verified by using the data of two cases, and the results reveal that the errors between measured and predicted values are less than 25%. The research results also show that abrasive wear is the main wear mechanism (approximately 88%). In addition, the influence of fatigue wear is very small, accounting for only approximately 2%, which can be ignored. Finally, the maximum tunneling distance of disc cutters under different installation radii and penetration is studied using the model, and the results can be used as references for optimizing shield tunneling parameters and predicting the disc cutter replacement time.

      • KCI등재

        Structural Deformation of Existing Horseshoe-Shaped Tunnels by Shield Overcrossing

        Weiqiang Qi,Zhiyong Yang,Yusheng Jiang,Xiaokang Shao,Xing Yang,Qing He 대한토목학회 2021 KSCE Journal of Civil Engineering Vol.25 No.2

        In urban areas, the construction of subway tunnels is faced with complex crossing problems. The interaction of tunnels with structural deformation has not been comprehensively studied, especially in the construction of new tunnels crossing above existing tunnels. To better predict the structural deformation of the existing tunnels caused by shield excavation, this study used FLAC3D finite difference software, field monitoring, and an analytical method. A numerical model was used to simulate the influence of the shield weight, grouting pressure, and the grout hardening process on the existing tunnel. The results show that the deformation of horseshoe-shaped tunnel structure can be divided into four stages and the corresponding control measures should be taken for each stage to prevent the structural damage. Moreover, the weight of the shield can restrain the existing tunnel from floating up, but it may cause the cracking of the existing tunnel structure without internal steel support. Based on the “two-stage analysis method”, the simplified analytical method solved the additional stress and the uplift deformation in the first stage and second stage, respectively. The proposed analytical method can rapidly estimate the maximum uplift deformation of the existing horseshoe-shaped tunnel with different bending stiffness values under shield excavation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼