RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Engineering of a Bacillus subtilis Strain Deficient in Cellulase: Application in Degumming of Ramie

        Qi Yang,Shengwen Duan,Lifeng Cheng,Xiangyuan Feng,Ke Zheng,Chunliang Xie,Zhiyuan Liu,Yuande Peng 한국섬유공학회 2019 Fibers and polymers Vol.20 No.1

        Degumming is the most important step before ramie fibers are used in textile industry. Conventional chemical degumming technology with alkaline treatment at high temperature causes critical problems in environment. In addition to multiple degumming enzymes (e.g. pectinases and xylanases), Bacillus subtilis strain 168 can also produce cellulase which brings irreversible damage to ramie fibers. In this study, a strain deficient in cellulase was constructed by insertional inactivation of gene eglS to make it suitable for microbial degumming. Results showed that the cellulase activity was not detected in strain ΔeglS, after 25 h of incubation with strain ΔeglS, the weight loss of the ramie fibers was 20.20 %. Though the residual gum content of ramie fibers obtained in microbial degumming process was 19.67 %, microbial intervention followed by diluted alkaline solution treatment showed lower residual gum content (2.73 %) than chemical degumming (2.96 %). The single fiber breaking strength value of ramie fibers from bio-chemical degumming process reached 27.19 cN, which was the highest of three samples. Moreover, bio-chemical degumming process resulted in a 75 % decrease of alkali dosage as compared with chemical degumming process. This study provides a suggestion to genetically modify wild-type strain in order to protect ramie fibers from cellulase damage, and indicates a sustainable alternative for the traditional chemical degumming in the textile industry.

      • Changing PEO coating formation on Mg alloys by particle additions to the treatment electrolyte

        Carsten Blawert,Bala Srinivasan,Jun Liang,Yuanding Huang,Daniel Hoche,Nico Scharnagl,Volker Heitmann,Ulrich Burmester 한국표면공학회 2012 한국표면공학회 학술발표회 초록집 Vol.2012 No.11

        Plasma electrolytic oxidation of magnesium alloys is a well known technique to produce corrosion and wear resistant coatings. The addition of particles to the electrolyte provides a possibility to produce coatings with an increasing range of composition by in-situ incorporation of those particles into the coating. An extensive literature review has revealed that the mode of incorporation depends mainly on the melting point of the used particles and the energy provided by the discharges of the PEO process. The spectrum ranges from inert to partly reactive incorporation, but a complete reactive incorporation and a formation of a new single phase coating was not observed so far. Thus a new approach in PEO processing is introduced using specific particles as a kind of sintering additive, changing not only the composition but lowering the melting temperature and increase the liquid phase fraction during the discharges, resulting in a new amorphous coating.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼