RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Time-domain analysis of nonlinear motion responses and structural loads on ships and offshore structures

        Yonghwan Kim,Kyong-Hwan Kim,Jae-Han Kim,Taeyoung Kim,Min-Guk Seo,Yooil Kim 대한조선학회 2011 International Journal of Naval Architecture and Oc Vol.3 No.1

        The present paper introduced a computer program, called WISH, which is based on a time-domain Rankine panel method. The WISH has been developed for practical use to predict the linear and nonlinear ship motion and structural loads in waves. The WISH adopts three different levels of seakeeping analysis: linear, weakly-nonlinear and weak-scatterer approaches. Later, WISH-FLEX has been developed to consider hydroelasticity effects on hull-girder structure. This program can solve the springing and whipping problems by coupling between the hydrodynamic and structural problems. More recently this development has been continued to more diverse problems, including the motion responses of multiple adjacent bodies, the effects of seakeeping in ship maneuvering, and the floating-body motion in finite-depth domain with varying bathymetry. This paper introduces a brief theoretical and numerical background of the WISH package, and some validation results. Also several applications to real ships and offshore structures are shown.

      • KCI등재
      • KCI등재
      • SCIESCOPUSKCI등재

        On the second order effect of the springing response of large blunt ship

        Yooil Kim,Sung-Gun Park 대한조선학회 2015 International Journal of Naval Architecture and Oc Vol.7 No.5

        The springing response of a large blunt ship was considered to be influenced by a second order interaction between the incoming irregular wave and the blunt geometry of the forebody of the ship. Little efforts have been made to simulate this complicated fluid-structure interaction phenomenon under irregular waves considering the second order effect; hence, the above mentioned premise still remains unproven. In this paper, efforts were made to quantify the second order effect between the wave and vibrating flexible ship structure by analyzing the experimental data obtained through the model basin test of the scaled-segmented model of a large blunt ship. To achieve this goal, the measured vertical bending moment and the wave elevation time history were analyzed using a higher order spectral analysis technique, where the quadratic interaction between the excitation and response was captured by the cross bispectrum of two randomly oscillating variables. The nonlinear response of the vibrating hull was expressed in terms of a quadratic Volterra series assuming that the wave excitation is Gaussian. The Volterra series was then orthogonalized using Barrett’s procedure to remove the interference between the kernels of different orders. Both the linear and quadratic transfer functions of the given system were then derived based on a Fourier transform of the orthogonalized Volterra series. Finally, the response was decomposed into a linear and quadratic part to determine the contribution of the second order effect using the obtained linear and quadratic transfer functions of the system, combined with the given wave spectrum used in the experiment. The contribution of the second order effect on the springing response of the analyzed ship was almost comparable to the linear one in terms of its peak power near the resonance frequency.

      • SCIESCOPUSKCI등재

        Extraction of the mode shapes of a segmented ship model with a hydroelastic response

        Yooil Kim,In-Gyu Ahn,Sung-Gun Park 대한조선학회 2015 International Journal of Naval Architecture and Oc Vol.7 No.6

        The mode shapes of a segmented hull model towed in a model basin were predicted using both the Proper Orthogonal Decomposition (POD) and cross random decrement technique. The proper orthogonal decomposition, which is also known as Karhunen-Loeve decomposition, is an emerging technology as a useful signal processing technique in structural dynamics. The technique is based on the fact that the eigenvectors of a spatial coherence matrix become the mode shapes of the system under free and randomly excited forced vibration conditions. Taking advantage of the simplicity of POD, efforts have been made to reveal the mode shapes of vibrating flexible hull under random wave excitation. First, the segmented hull model of a 400 K ore carrier with 3 flexible connections was towed in a model basin under different sea states and the time histories of the vertical bending moment at three different locations were measured. The measured response time histories were processed using the proper orthogonal decomposition, eventually to obtain both the first and second vertical vibration modes of the flexible hull. A comparison of the obtained mode shapes with those obtained using the cross random decrement technique showed excellent correspondence between the two results.

      • SCIESCOPUSKCI등재

        Fatigue analysis on the mooring chain of a spread moored FPSO considering the OPB and IPB

        Kim, Yooil,Kim, Min-Suk,Park, Myong-Jin The Society of Naval Architects of Korea 2019 International Journal of Naval Architecture and Oc Vol.11 No.1

        The appropriate design of a mooring system to maintain the position of an offshore structure in deep sea under various environmental loads is important. Fatigue design of the mooring line considering OPB/IPB(out-of-plane bending/in-plane bending) became an essential factor after the incident of premature fatigue failure of the mooring chain due to OPB/IPB in the Girassol region in West Africa. In this study, mooring line fatigue analysis was performed considering the OPB/IPB of a spread moored FPSO in deep sea. The tension of the mooring line was derived by hydrodynamic analysis using the de-coupled analysis method. The floater motion time histories were calculated under the assumption that the mooring line behaves in quasi-static manner. Additional time domain analysis was carried out by prescribing the obtained motions on top of the selected critical mooring line, which was determined based on spectral fatigue analysis. In addition, nonlinear finite element analysis was performed considering the material nonlinearities, and both the interlink stiffness and stress concentration factors were derived. The fatigue damage to the chain surface was estimated by combining both the hydrodynamic and stress analysis results.

      • SCIESCOPUSKCI등재

        On the second order effect of the springing response of large blunt ship

        Kim, Yooil,Park, Sung-Gun The Society of Naval Architects of Korea 2015 International Journal of Naval Architecture and Oc Vol.7 No.5

        The springing response of a large blunt ship was considered to be influenced by a second order interaction between the incoming irregular wave and the blunt geometry of the forebody of the ship. Little efforts have been made to simulate this complicated fluid-structure interaction phenomenon under irregular waves considering the second order effect; hence, the above mentioned premise still remains unproven. In this paper, efforts were made to quantify the second order effect between the wave and vibrating flexible ship structure by analyzing the experimental data obtained through the model basin test of the scaled-segmented model of a large blunt ship. To achieve this goal, the measured vertical bending moment and the wave elevation time history were analyzed using a higher order spectral analysis technique, where the quadratic interaction between the excitation and response was captured by the cross bispectrum of two randomly oscillating variables. The nonlinear response of the vibrating hull was expressed in terms of a quadratic Volterra series assuming that the wave excitation is Gaussian. The Volterra series was then orthogonalized using Barrett's procedure to remove the interference between the kernels of different orders. Both the linear and quadratic transfer functions of the given system were then derived based on a Fourier transform of the orthogonalized Volterra series. Finally, the response was decomposed into a linear and quadratic part to determine the contribution of the second order effect using the obtained linear and quadratic transfer functions of the system, combined with the given wave spectrum used in the experiment. The contribution of the second order effect on the springing response of the analyzed ship was almost comparable to the linear one in terms of its peak power near the resonance frequency.

      • SCIESCOPUSKCI등재

        Extraction of the mode shapes of a segmented ship model with a hydroelastic response

        Kim, Yooil,Ahn, In-Gyu,Park, Sung-Gun The Society of Naval Architects of Korea 2015 International Journal of Naval Architecture and Oc Vol.7 No.6

        The mode shapes of a segmented hull model towed in a model basin were predicted using both the Proper Orthogonal Decomposition (POD) and cross random decrement technique. The proper orthogonal decomposition, which is also known as Karhunen-Loeve decomposition, is an emerging technology as a useful signal processing technique in structural dynamics. The technique is based on the fact that the eigenvectors of a spatial coherence matrix become the mode shapes of the system under free and randomly excited forced vibration conditions. Taking advantage of the simplicity of POD, efforts have been made to reveal the mode shapes of vibrating flexible hull under random wave excitation. First, the segmented hull model of a 400 K ore carrier with 3 flexible connections was towed in a model basin under different sea states and the time histories of the vertical bending moment at three different locations were measured. The measured response time histories were processed using the proper orthogonal decomposition, eventually to obtain both the first and second vertical vibration modes of the flexible hull. A comparison of the obtained mode shapes with those obtained using the cross random decrement technique showed excellent correspondence between the two results.

      • SCIESCOPUSKCI등재

        Rapid response calculation of LNG cargo containment system under sloshing load using wavelet transformation

        Kim, Yooil The Society of Naval Architects of Korea 2013 International Journal of Naval Architecture and Oc Vol.5 No.2

        Reliable strength assessment of the Liquefied Natural Gas (LNG) cargo containment system under the sloshing impact load is very difficult task due to the complexity of the physics involved in, both in terms of the hydrodynamics and structural mechanics. Out of all those complexities, the proper selection of the design sloshing load which is applied to the structural model of the LNG cargo containment system, is one of the most challenging one due to its inherent randomness as well as the statistical analysis which is tightly linked to the design sloshing load selection. In this study, the response based strength assessment procedure of LNG cargo containment system has been developed and proposed as an alternative design methodology. Sloshing pressure time history, measured from the model test, is decomposed into wavelet basis function targeting the minimization of the number of the basis function together with the maximization of the numerical efficiency. Then the response of the structure is obtained using the finite element method under each wavelet basis function of different scale. Finally, the response of the structure under entire sloshing impact time history is rapidly calculated by synthesizing the structural response under wavelet basis function. Through this analysis, more realistic response of the system under sloshing impact pressure can be obtained without missing the details of pressure time history such as rising pattern, oscillation due to air entrapment and decay pattern and so on. The strength assessment of the cargo containment system is then performed based on the statistical analysis of the stress peaks selected out of the obtained stress time history.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼