RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Ti-doping induced antiferroelectric to ferroelectric phase transition and electrical properties in Sm-PbZrO3 thin films

        Thatikonda Santhosh Kumar,Huang Wenhua,Du Xingru,Yao Chuangye,Ke Yifu,Wu Jiang,Qin Ni,Bao Dinghua 한국물리학회 2021 Current Applied Physics Vol.24 No.-

        The antiferroelectric (Pb0.985Sm0.01) (Zr1-xTix)O3 (Ti-PSZO) thin films were synthesized on Pt(111)/Ti/SiO2/Si substrates using a chemical solution deposition method. The films were crystallized in the perovskite phase with a preferential orientation along (111) direction. With Ti doping in PSZO, a gradual transformation from antiferroelectric to ferroelectric phase transition was noticed at room temperature owing to the Ti doping induced lattice distortion. The phase transition has been confirmed through the P - E hysteresis loops, X-ray diffraction (peak shifting), capacitance-voltage measurements, and Raman scattering analysis. The thin film with Ti = 0.15 doping displayed a ferroelectric behavior with high dielectric constant and large dielectric tunability of about 62%. Also, Ti doping altered the Curie temperature (Tc) and enhanced the order of dielectric diffuseness. It is believed that Ti-doping in PSZO is an effective way to induce an antiferroelectric - ferroelectric phase transition and to tailor the electrical characteristics of PSZO thin films.

      • Cryogenic microwave dielectric properties of Mg<sub>2</sub>TiO<sub>4</sub> ceramics added with CeO<sub>2</sub> nanoparticles

        Bhuyan, Ranjan K.,Thatikonda, Santhosh K.,Dobbidi, Pamu,Renehan, J.M.,Jacob, Mohan V. Techno-Press 2014 Advances in materials research Vol.3 No.2

        The microwave dielectric properties of $CeO_2$ nanoparticles (0.5, 1.0 & 1.5wt%) doped $Mg_2TiO_4$ (MTO) ceramics have been investigated at cryogenic temperatures. The XRD patterns of the samples were refined using the full proof program reveal the inverse spinel structure without any secondary phases. The addition of $CeO_2$ nanoparticles lowered the sintering temperature with enhancement in density and grain size as compared to pure MTO ceramics. This is attributed to the higher sintering velocity of the fine particles. Further, the microwave dielectric properties of the MTO ceramics were measured at cryogenic temperatures in the temperature range of 6.5-295 K. It is observed that the loss tangent ($tan{\delta}$) of all the samples increased with temperature. However, the $CeO_2$ nanoparticles doped MTO ceramics manifested lower loss tangents as compared to the pure MTO ceramics. The loss tangents of the pure and MTO ceramics doped with 1.5 wt% of $CeO_2$ nanoparticles measured at 6.5K are found to be $6.6{\times}10^{-5}$ and $5.4{\times}10^{-5}$, respectively. The addition of $CeO_2$ nanoparticles did not cause any changes on the temperature stability of the MTO ceramics at cryogenic temperatures. On the other hand, the temperature coefficient of the permittivity increased with rise in temperature and with the wt% of $CeO_2$ nanoparticles. The obtained lower loss tangent values at cryogenic temperatures can be attributed to the decrease in both intrinsic and extrinsic losses in the MTO ceramics.

      • KCI등재

        Highly frequency-, temperature-, and bias-stable dielectric properties of 500 °C processed Bi2SiO5 thin films with low dielectric loss

        Yifu Ke,Wenhua Huang,Santhosh Kumar Thatikonda,Ruqi Chen,Chuangye Yao,Ni Qin,Dinghua Bao 한국물리학회 2020 Current Applied Physics Vol.20 No.6

        Excellent dielectric frequency, bias, and temperature stability of bismuth silicate (Bi2SiO5, BSO) thin films with a low dielectric loss has been obtained in this study. The thin films were prepared on Pt/Ti/SiO2/Si substrates by a chemical solution deposition method at a relatively low annealing temperature of 500 °C. The BSO films have a preferred growth along (200) orientation with dense fine-grained surface morphology. The dielectric constant and dielectric loss of the thin film annealed at 500 °C are 57 and 0.01, respectively, at 100 kHz, with little change between 1 kHz and 100 kHz and in the bias electric field range between−250 kV/cm and 250 kV/cm, indicating that the thin film exhibits a low dielectric loss as well as excellent frequency and bias field stability. The dielectric- temperature measurements confirmed that the BSO thin film annealed at 500 °C also has good temperature stability between 150 K and 450 K. Our results suggest that the BSO thin films have potential applications in the next-generation integrated capacitors.

      • KCI등재

        Coexistence of resistive switching and magnetism modulation in sol-gel derived nanocrystalline spinel Co3O4 thin films

        Chuangye Yao,Wei Hu,Muhammad Ismail,Santhosh Kumar Thatikonda,Aize Hao,Shuai He,Ni Qin,Wenhua Huang,Dinghua Bao 한국물리학회 2019 Current Applied Physics Vol.19 No.11

        We report the coexistence of resistive switching and magnetism modulation in the Pt/Co3O4/Pt devices, where the effects of thermal annealing and film thickness on the resistive and magnetization switching were investigated. The sol-gel derived nanocrystalline Co3O4 thin films obtained crack-free surface and crystallized cubic spinel structure. The 110 nm Co3O4 film based device annealed at 600 °C exhibited optimum resistive switching parameters. From I–V curves fitting and temperature dependent resistance, the conduction mechanism in the high-voltage region of high resistance state was dominated by Schottky emission. Magnetization-magnetic field loops demonstrated the ferromagnetic behaviors of the Co3O4 thin films. Multilevel saturation magnetization of the Co3O4 thin films can be easily realized by tuning the resistance states. Physical resistive switching mechanism can be attributed to the rejuvenation and annihilation of conductive filament consisting of oxygen vacancies. Results suggest that Pt/Co3O4/Pt device shows promising applications in the multifunctional electromagnetic integrated devices.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼