RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Effect of GeO<sub>2</sub> on embryo development and photosynthesis in Fucus vesiculosus (Phaeophyceae)

        Tarakhovskaya, Elena R.,Kang, Eun-Ju,Kim, Kwang-Young,Garbary, David J. The Korean Society of Phycology 2012 ALGAE Vol.27 No.2

        Germanium dioxide ($GeO_2$) has been used for many years in the cultivation of red and green algae as a means of controlling the growth of diatoms. Brown algae are sensitive to $GeO_2$, however, the basis of this sensitivity has not been characterized. Here we use embryos of $Fucus$ $vesiculosus$ to investigate morphological and physiological impacts of $GeO_2$ toxicity. Morphometric features of embryos were measured microscopically, and physiological features were determined using pulse amplitude modulated (PAM) fluorometry. At 5 mg $L^{-1}$ $GeO_2$, embryos grew slower than controls and developed growth abnormalities. After 24 h, initial zygote divisions were often oblique rather than transverse. Rhizoids had inflated tips in $GeO_2$ and were less branched, and apical hairs were deformed, with irregularly aligned, spheroidal cells. Minimum fluorescence ($F_0$) showed minor differences over the 10 days experiment, and pigment levels (chlorophylls $a$, $c$ and total carotenoids) showed no difference after 10 days. Optimum quantum yield increased from ca. 0.52 at 24 h to 0.67 at 5 days, and $GeO_2$-treated embryos had higher mean values (significant at 3 and 5 days). Optimum quantum yield of photosystem II (${\Phi}_{PSII}$) was stable in control thalli after 5 days, but declined significantly in $GeO_2$. Addition of silica (as $SiO_2$) did not reverse the effects of $GeO_2$. These results suggest that $GeO_2$ toxicity in brown algae is associated with negative impacts at the cytological level rather than metabolic impacts associated with photosynthesis.

      • KCI등재

        Effect of GeO2 on embryo development and photosynthesis in Fucus vesiculosus (Phaeophyceae)

        Elena R. Tarakhovskaya,Eun Ju Kang,Kwang Young Kim,David J. Garbary 한국조류학회I 2012 ALGAE Vol.27 No.2

        Germanium dioxide (GeO2) has been used for many years in the cultivation of red and green algae as a means of controlling the growth of diatoms. Brown algae are sensitive to GeO2, however, the basis of this sensitivity has not been characterized. Here we use embryos of Fucus vesiculosus to investigate morphological and physiological impacts of GeO2 toxicity. Morphometric features of embryos were measured microscopically, and physiological features were determined using pulse amplitude modulated (PAM) fluorometry. At 5 mg L-1 GeO2, embryos grew slower than controls and developed growth abnormalities. After 24 h, initial zygote divisions were often oblique rather than transverse. Rhizoids had inflated tips in GeO2 and were less branched, and apical hairs were deformed, with irregularly aligned, spheroidal cells. Minimum fluorescence (F0) showed minor differences over the 10 days experiment, and pigment levels (chlorophylls a, c and total carotenoids) showed no difference after 10 days. Optimum quantum yield increased from ca. 0.52 at 24 h to 0.67 at 5 days, and GeO2-treated embryos had higher mean values (significant at 3 and 5 days). Optimum quantum yield of photosystem II (ΦPSII) was stable in control thalli after 5 days, but declined significantly in GeO2. Addition of silica (as SiO2) did not reverse the effects of GeO2. These results suggest that GeO2 toxicity in brown algae is associated with negative impacts at the cytological level rather than metabolic impacts associated with photosynthesis.

      • SCIESCOPUSKCI등재

        Marine macroalgae and associated flowering plants from the Keret Archipelago, White Sea, Russia

        Garbary, David J.,Tarakhovskaya, Elena R. The Korean Society of Phycology 2013 ALGAE Vol.28 No.3

        The marine algal flora of the Keret Archipelago ($66^{\circ}$ N, $33^{\circ}$ E) in the White Sea, Russia was investigated during 2008. Over 250 algal records from more than 15 islands and several sites on the adjoining mainland produced a total of 62 algal species. This raised the total from 56 to 88 species of Chlorophyta (23 species), Phaeophyceae (31 species), Rhodophyta (33 species), and Tribophyceae (1 species) of which seven were new records or verifications of ambiguous records for the White Sea and 11 species are new for the Keret Archipelago. The new or confirmed records included species of Blidingia, Eugomontia, Prasiola, Rosenvingiella, and Ulothrix (Chlorophyta), Acrochaetium, Colaconema (Rhodophyta), and Vaucheria (Tribophyceae). Five species of flowering plants (Aster, Plantago, Triglochin, and Zostera) were associated with the macrophytic algal vegetation of the region. Five fucoid algae in Pelvetia, Fucus, and Ascophyllum provide a picture of a temperate flora. Regardless, the overall species richness is consistent with an arctic nature to the flora. This discrepancy is attributed to the 'filter' provided by the Barents Sea of the Arctic Ocean for post-glacial colonization of the White Sea.

      • KCI등재

        Marine macroalgae and associated flowering plants from the Keret Archipelago, White Sea, Russiaa

        David J. Garbary,Elena R. Tarakhovskaya 한국조류학회I 2013 ALGAE Vol.28 No.3

        The marine algal flora of the Keret Archipelago (66° N, 33° E) in the White Sea, Russia was investigated during 2008. Over 250 algal records from more than 15 islands and several sites on the adjoining mainland produced a total of 62 algal species. This raised the total from 56 to 88 species of Chlorophyta (23 species), Phaeophyceae (31 species), Rhodophyta (33 species), and Tribophyceae (1 species) of which seven were new records or verifications of ambiguous records for the White Sea and 11 species are new for the Keret Archipelago. The new or confirmed records included species of Blidingia, Eugomontia, Prasiola, Rosenvingiella, and Ulothrix (Chlorophyta), Acrochaetium, Colaconema (Rhodophyta), and Vaucheria (Tribophyceae). Five species of flowering plants (Aster, Plantago, Triglochin, and Zostera) were associated with the macrophytic algal vegetation of the region. Five fucoid algae in Pelvetia, Fucus, and Ascophyllum provide a picture of a temperate flora. Regardless, the overall species richness is consistent with an arctic nature to the flora. This discrepancy is attributed to the ‘filter’ provided by the Barents Sea of the Arctic Ocean for post-glacial colonization of the White Sea.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼