RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        On the usefulness of discrete element computer modeling of particle packing for material characterization in concrete technology

        P. Stroeven,M. Stroeven,J. Hu 사단법인 한국계산역학회 2009 Computers and Concrete, An International Journal Vol.6 No.2

        Discrete element modeling (DEM) in concrete technology is concerned with design and use of models that constitute a schematization of reality with operational potentials. This paper discusses the material science principles governing the design of DEM systems and evaluates the consequences for their operational potentials. It surveys the two families in physical discrete element modeling in concrete technology, only touching upon probabilistic DEM concepts as alternatives. Many common DEM systems are based on random sequential addition (RSA) procedures; their operational potentials are limited to low configuration-sensitivity features of material structure, underlying material performance characteristics of low structure-sensitivity. The second family of DEM systems employs concurrent algorithms, involving particle interaction mechanisms. Static and dynamic solutions are realized to solve particle overlap. This second family offers a far more realistic schematization of reality as to particle configuration. The operational potentials of this family involve valid approaches to structure-sensitive mechanical or durability properties. Illustrative 2D examples of fresh cement particle packing and pore formation during maturation are elaborated to demonstrate this. Mainstream fields of present day and expected application of DEM are sketched. Violation of the scientific knowledge of to day underlying these operational potentials will give rise to unreliable solutions.

      • KCI등재후보

        Influence of particle packing on fracture properties of concrete

        Huan He,Piet Stroeven,Martijn Stroeven,Lambertus Johannes Sluys 사단법인 한국계산역학회 2011 Computers and Concrete, An International Journal Vol.8 No.6

        Particle packing on meso-level has a significant influence on workability of fresh concrete and also on the mechanical and durability properties of the matured material. It was demonstrated earlier that shape exerts but a marginal influence on the elastic properties of concrete provided being packed to the same density, which is not necessarily the case with different types of aggregate. Hence, elastic properties of concrete can be treated as approximately structure-insensitive parameters. However, fracture behaviour can be expected structure-sensitive. This is supported by the present study based on discrete element method (DEM) simulated three-phase concrete, namely aggregate, matrix and interfacial transition zones (ITZs). Fracture properties are assessed with the aid of a finite element method (FEM) based on the damage materials model. Effects on tensile strength due to grain shape and packing density are investigated. Shape differences are shown to have only modest influence. Significant effects are exerted by packing density and physicalmechanical properties of the phases, whereby the ITZ takes up a major position.

      • KCI등재후보

        Optimization of particle packing by analytical and computer simulation approaches

        Huan He,Piet Stroeven,Martijn Stroeven,Lambertus Johannes Sluys 사단법인 한국계산역학회 2012 Computers and Concrete, An International Journal Vol.9 No.2

        Optimum packing of aggregate is an important aspect of mixture design, since porosity may be reduced and strength improved. It may also cause a reduction in paste content and is thus of economic relevance too. Several mathematic packing models have been developed in the literature for optimization of mixture design. However in this study, numerical simulation will be used as the main tool for this purpose. A basic, simple theoretical model is used for approximate assessment of mixture optimization. Calculation and simulation will start from a bimodal mixture that is based on the mono-sized packing experiences. Tri-modal and multi-sized particle packing will then be discussed to find the optimum mixture. This study will demonstrate that computer simulation is a good alternative for mixture design and optimization when appropriate particle shapes are selected. Although primarily focusing on aggregate, optimization of blends of Portland cement and mineral admixtures could basically be approached in a similar way.

      • KCI등재

        RSA vs DEM in view of particle packing-related properties of cementitious materials

        Kai Li,Piet Stroeven 사단법인 한국계산역학회 2018 Computers and Concrete, An International Journal Vol.22 No.1

        Various systems for simulating particulate matter are developed and used in concrete technology for producing virtual cementitious materials on the different levels of the microstructure. Basically, the systems can be classified as two distinct families, namely random sequential addition systems (RSAs) and discrete element methods (DEMs). The first type is hardly being used for this purpose outside concrete technology, but became popular among concrete technologists. Hence, it is of utmost relevance to compare the two families in their capabilities, so that the reliability of produced data can be estimated. This paper pursues to do this on the basis of earlier published material of work performed by a succession of PhD students in the group of the second author. Limited references will be given to external sources.

      • KCI등재후보

        Spatial dispersion of aggregate in concrete a computer simulation study

        Huisu Chen,Piet Stroeven,Jing Hu 한국계산역학회 2006 Computers and Concrete, An International Journal Vol.3 No.5

        Experimental research revealed that the spatial dispersion of aggregate grains exerts pronounced influences on the mechanical and durability properties of concrete. Therefore, insight into this phenomenon is of paramount importance. Experimental approaches do not provide direct access to three-dimensional spacing information in concrete, however. Contrarily, simulation approaches are mostly deficient in generating packing systems of aggregate grains with sufficient density. This paper therefore employs a dynamic simulation system (with the acronym SPACE), allowing the generation of dense random packing of grains, representative for concrete aggregates. This paper studies by means of SPACE packing structures of aggregates with a Fuller type of size distribution, generally accepted as a suitable approximation for actual aggregate systems. Mean free spacing , mean nearest neighbour distance (NND) between grain centres , and the probability density function of D3 are used to characterize the spatial dispersion of aggregate grains in model concretes. Influences on these spacing parameters are studied of volume fraction and the size range of aggregate grains. The values of these descriptors are estimated by means of stereological tools, whereupon the calculation results are compared with measurements. The simulation results indicate that the size range of aggregate grains has a more pronounced influence on the spacing parameters than exerted by the volume fraction of aggregate. At relatively high volume density of aggregates, as met in the present cases, theoretical and experimental values are found quite similar. The mean free spacing is known to be independent of the actual dispersion characteristics (Underwood 1968); it is a structural parameter governed by material composition. Moreover, scatter of the mean free spacing among the serial sections of the model concrete in the simulation study is relatively small, demonstrating the sample size to be representative for composition homogeneity of aggregate grains. The distribution of observed in this study is markedly skew, indicating a concentration of relatively small values of . The estimate of the size of the representative volume element (RVE) for configuration homogeneity based on NND exceeds by one order of magnitude the estimate for structure-insensitive properties. This is in accordance with predictions of Brown (1965) for composition and configuration homogeneity (corresponding to structure-insensitive and structure-sensitive properties) of conglomerates.

      • KCI등재후보

        Theoretical prediction on thickness distribution of cement paste among neighboring aggregates in concrete

        Huisu Chen,Lambertus Johannes Sluys,Piet Stroeven,Wei Sun 사단법인 한국계산역학회 2011 Computers and Concrete, An International Journal Vol.8 No.2

        By virtue of chord-length density function from the field of statistical physics, this paper introduced a quantitative approach to estimate the distribution of cement paste thickness between aggregates in concrete. Dynamics mixing method based on molecular dynamics was employed to generate one model structure, then image analysis algorithm was used to obtain the distribution of thickness of cement paste in model structure for the purpose of verification. By comparison of probability density curves and cumulative probability curves of the cement paste thickness among neighboring aggregates, it is found that the theoretical results are consistent with the simulation. Furthermore, for the model mortar and concrete mixtures with practical volume fraction of Fuller-type aggregate, this analytical formula was employed to predict the influence of aggregate volume fraction and aggregate fineness. And evolution of its mean values were also investigated with the variation of volume fraction of aggregate as well as the fineness of aggregates in model mortars and concretes.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼