RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production.

        Saratale, Ganesh D,Kshirsagar, Siddheshwar D,Sampange, Vilas T,Saratale, Rijuta G,Oh, Sang-Eun,Govindwar, Sanjay P,Oh, Min-Kyu Humana Press 2014 Applied biochemistry and biotechnology Vol.174 No.8

        <P>Phanerochaete chrysosporium was evaluated for cellulase and hemicellulase production using various agricultural wastes under solid state fermentation. Optimization of various environmental factors, type of substrate, and medium composition was systematically investigated to maximize the production of enzyme complex. Using grass powder as a carbon substrate, maximum activities of endoglucanase (188.66 U/gds), exoglucanase (24.22 U/gds), cellobiase (244.60 U/gds), filter paperase (FPU) (30.22 U/gds), glucoamylase (505.0 U/gds), and xylanase (427.0 U/gds) were produced under optimized conditions. The produced crude enzyme complex was employed for hydrolysis of untreated and mild acid pretreated rice husk. The maximum amount of reducing sugar released from enzyme treated rice husk was 485 mg/g of the substrate. Finally, the hydrolysates of rice husk were used for hydrogen production by Clostridium beijerinckii. The maximum cumulative H2 production and H2 yield were 237.97 mL and 2.93 mmoL H2/g of reducing sugar, (or 2.63 mmoL H2/g of cellulose), respectively. Biohydrogen production performance obtained from this work is better than most of the reported results from relevant studies. The present study revealed the cost-effective process combining cellulolytic enzymes production under solid state fermentation (SSF) and the conversion of agro-industrial residues into renewable energy resources.</P>

      • KCI등재

        Fermentative Hydrogen Production Using Sorghum Husk as a Biomass Feedstock and Process Optimization

        Ganesh D. Saratale,Siddheshwar D. Kshirsagar,Rijuta G. Saratale,Sanjay P. Govindwar,오민규 한국생물공학회 2015 Biotechnology and Bioprocess Engineering Vol.20 No.4

        The potential of isolated actinomycetes and fungi were evaluated for the cellulase and xylanase production under solid state fermentation conditions. Maximal secretion of enzymes was observed with Phanerochaete chrysosporium using soybean straw. The potential of the produced crude enzyme complex was demonstrated by two-step enzymatic hydrolysis of untreated and mild acidpretreated sorghum husk (SH). A cellulase dose of 10 filter paper units (FPU) released 563.21 mg of reducing sugar (RS) per gram of SH with 84.45% hydrolysis and 53.64% glucose yields, respectively. Finally, enzymatic hydrolysates of SH were utilized for hydrogen production by Clostridium beijerinckii. Effects of temperature, pH of media, and substrate concentration on the biohydrogen production from SH hydrolysates were investigated. The optimal conditions for maximal hydrogen production using SH hydrolysate were determined to be a loading of 5.0 g RS/L, at 35°C, and controlled pH at 5.5. Under these optimal conditions, the cumulative H2 production, H2 production rate, and H2 yield were 1,117 mL/L, 46.54 mL/L/h, and 1.051 mol/mol RS, respectively. These results demonstrated a cost-effective hydrogen production is possible with sorghum husk as a lignocellulosic feedstock.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼