RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Interface Study of the Intermediate Connectors in Tandem Organic Devices

        Jian-Xin Tang,Man-Keung Fung,Chun-Sing Lee,Shuit-Tong Lee 한국정보디스플레이학회 2010 Journal of information display Vol.11 No.1

        The intermediate connectors play crucial roles in the performance of tandem organic light-emitting diodes (OLEDs) because they are required to facilitate charge carrier transport and to guarantee transparency for light transmission and deposition compatibility. Understanding the physical properties of the intermediate connector is not only fundamentally important but is also crucial to developing high-efficiency organic devices with a tandem structure. In this study, several effective intermediate connectors in tandem OLEDs using a doped or non-doped organic p-n heterojunction were systematically investigated by studying their interfacial electronic structures and corresponding device characteristics. The working mechanisms of the intermediate connectors are discussed herein by referring to their relevant energy levels with respect to those of the neighboring organic layers. The factors affecting the operation of the intermediate connectors in tandem OLEDs, as demonstrated herein, provide guidance for the identification of new materials and device architectures for high-performance devices.

      • SCOPUSKCI등재

        Interface Study of the Intermediate Connectors in Tandem Organic Devices

        Tang, Jian-Xin,Fung, Man-Keung,Lee, Chun-Sing,Lee, Shuit-Tong The Korean Infomation Display Society 2010 Journal of information display Vol.11 No.1

        The intermediate connectors play crucial roles in the performance of tandem organic light-emitting diodes (OLEDs) because they are required to facilitate charge carrier transport and to guarantee transparency for light transmission and deposition compatibility. Understanding the physical properties of the intermediate connector is not only fundamentally important but is also crucial to developing high-efficiency organic devices with a tandem structure. In this study, several effective intermediate connectors in tandem OLEDs using a doped or non-doped organic p-n heterojunction were systematically investigated by studying their interfacial electronic structures and corresponding device characteristics. The working mechanisms of the intermediate connectors are discussed herein by referring to their relevant energy levels with respect to those of the neighboring organic layers. The factors affecting the operation of the intermediate connectors in tandem OLEDs, as demonstrated herein, provide guidance for the identification of new materials and device architectures for high-performance devices.

      • KCI등재

        B40 fullerene: An efficient material for CO2 capture, storage and separation

        Huilong Dong,Bin Lin,Keith Gilmore,Tingjun Hou,Shuit-Tong Lee,Youyong Li 한국물리학회 2015 Current Applied Physics Vol.15 No.9

        Novel nanomaterials are promising for capture, storage and separation of CO2. By density functional calculations, we find that the newly discovered B40 fullerene is a suitable candidate. CO2 forms stable chemisorptions with B40 on specific sites, which is validated by the high adsorption energy, large charge transfer, and kinetic feasibility for B40(CO2) complexes. Due to the strong chemisorption, B40 shows high adsorption capacity for CO2 (up to 13.87 mmol/g). In addition, B40 shows good selectivity for CO2 and is efficient in separating it from gas mixtures like CO2/N2, CO2/H2, and CO2/CH4.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼