RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Removal of Cr(VI) from aqueous solution by rice husk derived magnetic sorbents

        Ruifeng Yang,Shangru Zhai,Yuan Fan,Zhimin Lei,Na Liu,Jialiang Lv,Bin Zhai,Lei Wang 한국화학공학회 2016 Korean Journal of Chemical Engineering Vol.33 No.4

        −A novel magnetic porous sorbent obtained from agricultural waste rice husk was successfully synthesized through a simple carbon-thermal method. The sorbent was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, N2 sorption analysis, and X-ray photoelectron spectroscopy. The removal efficiency of the sorbent for Cr(VI) was also investigated. Chromium adsorption was fitted by the pseudo-second-order and Langmuir models. The maximum chromium adsorption capacity, Brunauer-Emmett-Teller surface area, and average Barrett-Joyner-Halenda pore size of the magnetic sorbent were 157.7mg·g−1, 134.1m2·g−1, and 4.99 nm, respectively. The saturated magnetization of the novel adsorbent was 77.8 emu·g−1, indicating that the material can facilitate separation and recovery from aqueous systems. The removal mechanisms of Cr(VI) were also discussed. The result illustrates that rice husk-derived magnetic carbonaceous materials are a potential adsorbent for Cr(VI) pollution treatment and provide a suitable method for the effective conversion of biomass waste, which may solve the problem of waste disposal and widen the applications of the materials.

      • KCI등재

        Reinforcement of Power System Performance Through Optimal Allotment of Distributed Generators Using Metaheuristic Optimization Algorithms

        Mirsaeidi Sohrab,Li Shangru,Devkota Subash,He Jinghan,Li Meng,Wang Xiaojun,Konstantinou Charalambos,Said Dalila Mat,Muttaqi Kashem M. 대한전기학회 2022 Journal of Electrical Engineering & Technology Vol.17 No.5

        Owing to the acute shortage of electric power in the majority of countries, short-term measures such as installation of Distributed Generators (DGs) have attracted much attention in recent decades. Employment of DGs can provide numerous advantages for the power systems through reduction of losses, escalation of the voltage profi le, as well as mitigation of pollutant emissions. However, in case they are not optimally allotted, they may even lead to aggravation of the network operation from diff erent aspects. The aim of this paper is to explore the optimal size and location of DGs using metaheuristic optimization algorithms so that the network performance is enhanced. The salient feature of the proposed strategy compared to the previous works is that it contemplates optimal allotment of DGs under various objectives, i.e. minimization of total network active and reactive power losses, and Cumulative Voltage Deviation (CVD), with diff erent weight values. Furthermore, the impact of enhancement in the number of DGs on diff erent aspects of power system performance is investigated. Finally, to increase the accuracy of the results, three diff erent nature-inspired optimization algorithms, i.e. Genetic Algorithm (GA), Grey Wolf Optimizer (GWO), and Particle Swarm Optimization (PSO) are deployed, and their speed in approaching the global optimum is compared with each other. The simulation results on IEEE 14-bus system indicate that the proposed strategy not only can reinforce the overall network performance through reduction of active and reactive power losses, and voltage deviation but also lead to the improvement of network voltage profi le.

      • KCI등재

        Research and Improvement on Active Compliance Control of Hydraulic Quadruped Robot

        Rui Zhu,Qingjun Yang,Jiaxing Song,Shangru Yang,Yudong Liu,Qi Mao 제어·로봇·시스템학회 2021 International Journal of Control, Automation, and Vol.19 No.5

        This paper focuses on active compliance control of hydraulic quadruped robot, especially the analysis of the inner-loop of the coupled system. Current researches on active compliance control regard the bandwidth of the inner loop of the system as infinite, while ignoring that the extra-load will cause the inner-loop response characteristics to deteriorate when the leg is in the stance phase. In this work, we first briefly introduced the structure of the robot, and its kinematics and dynamics are analyzed. Next, the robot’s active compliance control framework is established, and the inner-loop two-cylinder coupling system is analyzed in depth. It can be concluded that the existence of low frequency poles in the system is the main reason for the poor response characteristics. Then through the analysis of the state equation and transfer function matrix of the multi-input multi-output system, we show that the equivalent hydraulic spring stiffness (EHSS) is the main factor affecting the zero-pole distribution. Furthermore, we optimize the structure to increase the EHSS to improve the response characteristics of the system. Finally, the co-simulation platform and single-leg experiment bench are introduced. The simulation and experimental results show that the response speed of the inner-loop control is significantly improved after optimization, and the robot with active compliance control strategies can significantly reduce the impact of the foot.

      • KCI등재

        Hydrogels with diffusion-facilitated porous network for improved adsorption performance

        Yan-yan Pei,Dong-mei Guo,Qing-da An,Zuo-yi Xiao,Shangru Zhai,Bin Zhai 한국화학공학회 2018 Korean Journal of Chemical Engineering Vol.35 No.12

        Porous alginate-based hydrogel beads (porous ABH) have been prepared through a facile and sustainable template-assisted method using nano-calcium carbonate and nano-CaCO3 as pore-directing agent for the efficient capture of methylene blue (MB). The materials were characterized by various techniques. The sorption capacities of ABH towards MB were compared with pure sodium alginate (ABH-1:0) in batch and fixed-bed column adsorption studies. The obtained adsorbent (ABH-1:3) has a higher BET surface area and a smaller average pore diameter. The maximum adsorption capacity of ABH-1:3 obtained from Langmuir model was as high as 1,426.0mg g1. The kinetics strictly followed pseudo-second order rate equation and the adsorption reaction was effectively facilitated, approximately 50minutes to achieve adsorption equilibrium, which was significantly shorter than that of ABH-1:0. The thermodynamic parameters revealed that the adsorption was spontaneous and exothermic. Thomas model fitted well with the breakthrough curves and could describe the dynamic behavior of the column. More significantly, the uptake capacity of ABH-1:3 was still higher than 75% of the maximum adsorption capacity even after ten cycles, indicating that this novel adsorbent can be a promising adsorptive material for removal of MB from aqueous solution under batch and continuous systems.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼