RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Regularity and multiplicity of solutions for a nonlocal problem with critical Sobolev-Hardy nonlinearities

        Sarah Rsheed Mohamed Alotaibi,Kamel Saoudi 대한수학회 2020 대한수학회지 Vol.57 No.3

        In this work we investigate the nonlocal elliptic equation with critical Hardy-Sobolev exponents as follows, \[({\rm P}) \begin{cases} (-\Delta _p)^su = \lambda |u|^{q-2}u + \frac{|u|^{p^*_s(t)-2}u}{|x|^t} & \textrm{in} \ \Omega ,\\ u=0 & \textrm{in} \ \mathbb{R}^N\setminus\Omega, \end{cases} \] where $\Omega\subset\mathbb{R}^N$ is an open bounded domain with Lipschitz boundary, $0<s<1$, $\lambda >0$ is a parameter, $0<t<sp<N$, $1<q< p< p_s^*$ where $p^*_s = \frac{Np}{N-s p}$, $p^*_s(t) = \frac{p(N-t)}{N-s p}$, are the fractional critical Sobolev and Hardy-Sobolev exponents respectively. The fractional $p$-laplacian $(-\Delta_p)^s u$ with $s\in (0,1)$ is the nonlinear nonlocal operator defined on smooth functions by \[ (-\Delta_p)^s u(x)=2 \underset{\epsilon\searrow 0}{\lim}\int_{\mathbb{R}^{N}\backslash B_\epsilon}\frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{N+ ps}}\,{\rm d}y,\ \ x\in \mathbb{R}^N. \] The main goal of this work is to show how the usual variational methods and some analysis techniques can be extended to deal with nonlocal problems involving Sobolev and Hardy nonlinearities. We also prove that for some $\alpha\in (0,1)$, the weak solution to the problem ({\rm P}) is in $C^{1,\alpha}(\overline{\Omega})$.

      • SCIESCOPUSKCI등재

        REGULARITY AND MULTIPLICITY OF SOLUTIONS FOR A NONLOCAL PROBLEM WITH CRITICAL SOBOLEV-HARDY NONLINEARITIES

        Alotaibi, Sarah Rsheed Mohamed,Saoudi, Kamel Korean Mathematical Society 2020 대한수학회지 Vol.57 No.3

        In this work we investigate the nonlocal elliptic equation with critical Hardy-Sobolev exponents as follows, $$(P)\;\{(-{\Delta}_p)^su={\lambda}{\mid}u{\mid}^{q-2}u+{\frac{{\mid}u{\mid}^{p{^*_s}(t)-2}u}{{\mid}x{\mid}^t}}{\hspace{10}}in\;{\Omega},\\u=0{\hspace{217}}in\;{\mathbb{R}}^N{\backslash}{\Omega},$$ where Ω ⊂ ℝ<sup>N</sup> is an open bounded domain with Lipschitz boundary, 0 < s < 1, λ > 0 is a parameter, 0 < t < sp < N, 1 < q < p < p<sup>∗</sup><sub>s</sub> where $p^*_s={\frac{N_p}{N-sp}}$, $p^*_s(t)={\frac{p(N-t)}{N-sp}}$, are the fractional critical Sobolev and Hardy-Sobolev exponents respectively. The fractional p-laplacian (-∆<sub>p</sub>)<sup>s</sup>u with s ∈ (0, 1) is the nonlinear nonlocal operator defined on smooth functions by $\displaystyle(-{\Delta}_p)^su(x)=2{\lim_{{\epsilon}{\searrow}0}}\int{_{{\mathbb{R}}^N{\backslash}{B_{\epsilon}}}}\;\frac{{\mid}u(x)-u(y){\mid}^{p-2}(u(x)-u(y))}{{\mid}x-y{\mid}^{N+ps}}dy$, x ∈ ℝ<sup>N</sup>. The main goal of this work is to show how the usual variational methods and some analysis techniques can be extended to deal with nonlocal problems involving Sobolev and Hardy nonlinearities. We also prove that for some α ∈ (0, 1), the weak solution to the problem (P) is in C<sup>1,α</sup>(${\bar{\Omega}}$).

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼