RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Biophysical Study on the Interaction between Eperisone Hydrochloride and Human Serum Albumin Using Spectroscopic, Calorimetric, and Molecular Docking Analyses

        Rabbani, Gulam,Baig, Mohammad Hassan,Lee, Eun Ju,Cho, Won-Kyung,Ma, Jin Yeul,Choi, Inho American Chemical Society 2017 Molecular pharmaceutics Vol.14 No.5

        <P>Eperisone hydrochloride (EH) is widely used as a muscle relaxant for patients with muscular contracture, low back pain, or spasticity. Human serum albumin (HSA) is a highly soluble negatively charged, endogenous and abundant plasma protein ascribed with the ligand binding and transport properties. The current study was undertaken to explore the interaction between EH and the serum transport protein, HSA. Study of the interaction between HSA and EH was carried by UV-vis, fluorescence quenching, circular dichroism (CD), Fourier transform infrared (FTIR) spectroscopy, Forster's resonance energy transfer, isothermal titration calorimetry and differential scanning calorimetry. Tryptophan fluorescence intensity of HSA was strongly quenched by EH. The binding constants (K-b) were obtained by fluorescence quenching, and results show that the HSA-EH interaction revealed a static mode of quenching with binding constant K-b approximate to 10(4) reflecting high affinity of EH for HSA. The negative Delta G degrees value for binding indicated that HSA-Eli interaction was a spontaneous process. Thermodynamic analysis shows HSA-EH complex formation occurs primarily due to hydrophobic interactions, and hydrogen bonds were facilitated at the binding of EH. EH binding induces alpha-helix of HSA as obtained by far-UV CD and FTIR spectroscopy. In addition, the distance between EH (acceptor) and Trp residue of HSA (donor) was calculated 118 nm using Forster's resonance energy transfer theory. Furthermore, molecular docking results revealed EH binds with HSA, and binding site was positioned in Sudlow Site I of HSA (subdomain IIA). This work provides a useful experimental strategy for studying the interaction of myorelaxant with HSA, helping to understand the activity and mechanism of drug binding.</P>

      • SCOPUSKCI등재

        Electrochemical Characterization of Multilayered CdTe/PSS Films Prepared by Electrostatic Self-assembly Method

        Rabbani, Mohammad Mahbub,Yeum, Jeong Hyun,Kim, Jungsoo,Nam, Dae-Geun,Oh, Weontae The Korean Institute of Electrical and Electronic 2014 Transactions on Electrical and Electronic Material Vol.15 No.5

        Multilayered CdTe/PSS films were prepared by the electrostatic self-assembly method in an aqueous medium. Positively-charged cadmium telluride (CdTe) nanoparticles and anionic polyelectrolyte, poly (sodium 4-styrene sulfonate) (PSS) were assembled alternately in order to build up a multilayered film structure. A linear proportion of absorbance to the number of bilayers suggests that an equal amount of CdTe was adsorbed after each dipping cycle, which resulted in the buildup of a homogenous film. The binding energies of elements (Cd and Te) in multilayered CdTe/PSS film shifted from those of the CdTe nanoparticles in the pure state. This result indicates that the interfacial electron densities were redistributed by the strong electrostatic interaction between the oppositely-charged CdTe and PSS. Electrochemical properties of the multilayered CdTe/PSS films were studied in detail by cyclic voltammetry (CV).

      • SCISCIESCOPUS

        Characterization of Pullulan/Chitosan Oligosaccharide/Montmorillonite Nanofibers Prepared by Electrospinning Technique

        Rabbani, Mohammad Mahbub,Yang, Seong Baek,Park, Soo-Jin,Oh, Weontae,Yeum, Jeong Hyun American Scientific Publishers 2016 Journal of nanoscience and nanotechnology Vol.16 No.6

        <P>Pullulan/Chitosan oligosaccharide (COS)/Montmorillonite (MMT) hybrid nanofibers were electrospun from their aqueous solution using different Pullulan/COS mass ratios and variable amounts of MMT. The effects of Pullulan/COS mass ratios and MMT contents on the morphologies and properties of Pullulan/COS/MMT hybrid nanofibers were investigated. The obtained nanofibers were characterized with field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermo gravimetric analysis (TGA), and tensile strength measurement. The Pullulan/COS mass ratio and MMT contents significantly influence the morphologies and properties of the Pullulan/COS/MMT hybrid nanofibers. Higher Pullulan contents than COS contents forms uniform and bead free nanofibers. The addition of COS to Pullulan improves the thermal stability of Pullulan/COS blend nanofibers. The incorporation of MMT to the Pullulan/COS/MMT hybrid nanofibers increase their fiber diameter, improves their thermal stability and tensile strength. These morphological changes and property enhancement depend on the amount of MMT added. The XRD and TEM results suggest the coexistence of Pullulan, COS and MMT within polymer matrix through intercalation of polymer chain between silicate layers forming well-ordered multiplayer morphology with alternating polymeric and silicate layers.</P>

      • KCI등재

        Responses of Soybean Genotypes to Different Levels of Irrigation

        Rabbani, M.F.,Ashrafuzzaman, M.,Hoque, A.M.,Karim, M.Abdul The Korean Society of Crop Science 2004 Korean journal of crop science Vol.49 No.2

        To find out the responses of soybean genotypes in terms of different levels of irrigation with the aim of evaluating the growth, yield, and its optimum levels of irrigation, an experiment was conducted at the Field of Crop Botany Department, Bangladesh Agricultural University, Mymensingh during the period from November 2000 to February 2001. Five levels of irrigation viz. $\textrm{I}_0$: no irrigation, $\textrm{I}_1$: one time irrigation at 20 days after sowing (DAS), $\textrm{I}_2$:two times irrigation at 20 and 40 DAS, $\textrm{I}_3$: three times irrigation at 20, 40, and 60 DAS, and $\textrm{I}_4$: four times irrigation at 20, 40, 60, and 80 DAS and three genotypes of soybean viz. BS-3, BS-16, and BS-60 were used in this experiment. The crop was grown in a split plot design having three replications. The plant height, leaf area index, crop growth rate, shoot dry weight, branches $\textrm{plantI}_{-1}$, filled pods $\textrm{plantI}_{-1}$, seeds $\textrm{plantI}_{-1}$, seed yield, and harvest index were influenced significantly by irrigation and these were found to be highest at three times irrigation except branches $\textrm{plantI}_{-1}$. The chlorophyll content increased but empty pods $\textrm{plantI}_{-1}$ decreased with increase in irrigation levels. Genotypes of soybean varied significantly in terms of growth attributes at various growth stages except shoot dry weight at 90 DAS. The genotype BS-3 performed better compared to other genotypes and gave maximum seed yield.

      • SCIESCOPUSKCI등재

        Carbonic anhydrase influences asymmetric sodium and acetate transport across omasum of sheep

        Rabbani, Imtiaz,Rehman, Habib,Martens, Holger,Majeed, Khalid Abdul,Yousaf, Muhammad Shahbaz,Rehman, Zia Ur Asian Australasian Association of Animal Productio 2021 Animal Bioscience Vol.34 No.5

        Objective: Omasum is an important site for the absorption of short chain fatty acids. The major route for the transport of acetate is via sodium hydrogen exchanger (NHE). However, a discrepancy in the symmetry of sodium and acetate transport has been previously reported, the mechanism of which is unclear. In this study, we investigated the possible role of carbonic anhydrase (CA) for this asymmetry. Methods: Omasal tissues were isolated from healthy sheep (N = 3) and divided into four groups; pH 7.4 and 6.4 alone and in combination with Ethoxzolamide. Electrophysiological measurements were made using Ussing chamber and the electrical measurements were made using computer controlled voltage clamp apparatus. Effect(s) of CA inhibitor on acetate and sodium transport flux rate of Na22 and 14C-acetate was measured in three different flux time periods. Data were presented as mean±standard deviation and level of significance was ascertained at p≤0.05. Results: Mucosal to serosal flux of Na (JmsNa) was greater than mucosal to serosal flux of acetate (JmsAc) when the pH was decreased from 7.4 to 6.4. However, the addition of CA inhibitor almost completely abolished this discrepancy (JmsNa ≈ JmsAc). Conclusion: The results of the present study suggest that the additional protons required to drive the NHE were provided by the CA enzyme in the isolated omasal epithelium. The findings of this study also suggest that the functions of CA may be exploited for better absorption in omasum.

      • SCOPUSKCI등재

        Synthesis and Characterization of Methyltriethoxysilyl-Mediated Mesoporous Silicalites

        Rabbani, Mohammad Mahbub,Oh, Weon-Tae,Nam, Dae-Geun The Korean Institute of Electrical and Electronic 2011 Transactions on Electrical and Electronic Material Vol.12 No.3

        A series of mesoporous silicalites was synthesized using different compositions of tetraethylorthosilicate and methyltriethoxysilane (MTES) as the silica source. Cetyltrimethylammonium bromide was used as the organic template. Their detailed pore structures were investigated by transmission electron microscopy, X-ray diffraction, and N2 adsorption method. The thermal properties of these silicalites were studied by thermogravimetric analysis. The increased amount of MTES destroyed mesoporous channels and reduced pore sizes from 3.4 nm to 2.8 nm in calcined silicalites. The calcined silicalite transformed completely into an amorphous state at 30% MTES loading. Methyl pending groups of MTES hindered the structural ordering of ≡Si-O- frameworks, resulting in an amorphous structure. This was caused by the insufficient formation of supramolecular assembly with the organic template. No capillary condensation step was found in MS 7/3 silicalite. The other capillary condensation steps shifted toward the lower relative pressure with increasing MTES content, indicating the reduction of pore sizes.

      • KCI등재

        Effects of Rhizobium Inoculant, Nitrogen, Phosphorus, and Molybdenum on Nodulation, Yield, and Seed Protein in Pea

        Rabbani M. G.,Solaiman A. R. M.,Hossain K. M.,Hossain T. The Korean Society of Crop Science 2005 Korean journal of crop science Vol.50 No.2

        The effects of Rhizobium inoculant, nitrogen, phosphorus, and molybdenum on nodulation, dry matter production, yield attributes, pod and seed yields, protein and phosphorus contents in seed of pea (pisum sativum) var. IPSA Motorshuti-3 were assessed by a field experiment. Among the treatments Rhizobium inoculant in combination with 25kg P and 1.5kg Mo/ha performed best in recording number of nodules/plant, total dry matter yield, number of pods/plant, number of seeds/pod, 1000-seed weight, green pod yield, green and mature seed yields of pea. The highest green pod yield of 15.37 t/ha ($97.05\%$ increase over control) and green seed yield of 9.6t/ha ($69.31\%$ increase over control) were obtained by inoculating pea with Rhizobium inoculant in association with 25kg P and 1.5 Mo/ha. The effects of 60 or 120kg N/ha were comparable to Rhizobium inoculant in most cases. There were positive correlations among yield attributes, yield, protein and phosphorus contents in seeds of pea. From the viewpoint of yield attributes, yield, and seed quality, application of Rhizobium inoculant along with 25kg P and 1.5kg Mo/ha was considered to be the balanced combination of nutrients for achieving the maximum output from cultivation of pea in Shallow-Red Brown Terrace Soil of Bangladesh.

      • Effect of Co-solvent Ratios and Solution Concentrations on Morphologies of Electrospun Zein Nanomaterials

        Rabbani, Mohammad Mahbub,Kim, Young Hun,Yeum, Jeong Hyun Institute of Agricultural Science and Technology 2013 慶北大農學誌 Vol.31 No.1

        To investigate the effects of co-solvents on the morphology of nano-scale zein materials, zein solutions were electrospun with different co-solvent ratios of EtOH/$H_2O$. Different zein solution concentrations were used to study the effects of the zein content on the electrospun materials. The resulting electrospun materials were all characterized using field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The diameters of the electrospun nanoparticles and nanofibers were found to increase when increasing the EtOH ratio at certain zein concentrations. Furthermore, increasing the zein content changed the morphology of the electrospun materials from nanoparticles to nanofibers.

      • Binding of erucic acid with human serum albumin using a spectroscopic and molecular docking study

        Rabbani, G.,Baig, M.H.,Jan, A.T.,Ju Lee, E.,Khan, M.V.,Zaman, M.,Farouk, A.E.,Khan, R.H.,Choi, I. Elsevier 2017 International journal of biological macromolecules Vol.105 No.3

        Erucic acid (EA) is one of the key fatty acids usually found in canola oil, mustard oil and rapeseed oil. Consumption of EA in primates was found to cause myocardial lipidosis and cardiac steatosis. To have an insight of the effect of EA in humans, we performed in vitro interaction studies of EA with the primary plasma protein, human serum albumin (HSA). Spectroscopic (UV-vis and fluorescence) analysis of the HSA-EA interaction revealed a static mode of quenching with binding constant K<SUB>b</SUB> ~10<SUP>4</SUP> reflecting high affinity of EA for HSA. The negative value of ΔG<SUP>o</SUP> for binding of EA to HSA in the fluorescence studies indicates the process to be spontaneous. Thermodynamic signatures of the HSA-EA interaction in the complex reflect dominance of hydrogen bonds. Despite predominance of hydrogen bonds, hydrophobic interactions in the HSA-EA complex were found acting as a contributing factor in the binding of EA to HSA, observed as structural change in the far-UV CD spectra. Forster's resonance energy transfer of the EA-HSA complex revealed a distance of 3.2nm between acceptor molecules (EA) and the donor Trp residue of HSA. To have a deeper insight of the structural dependence of the HSA-EA interaction in the complex, thermodynamic study was supplemented with molecular docking. The molecular docking analysis further highlighted the EA binding in the subdomain IIIA (Sudlow site II) of HSA. The information generated in the study reflects greater pharmacological significance of EA and highlights its importance in the clinical medicine.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼