RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Comparison of Immune Responses between Human Body and Head Louse: Insights into Vector Competence Difference

        Ju Hyeon Kim,Domenic J. Previte,Kyung Jae Yoon,Kyung Mun Kim,Edwin Murenzi,Kyong Sup Yoon,J. Marshall Clark,Si Hyeock Lee 한국응용곤충학회 2016 한국응용곤충학회 학술대회논문집 Vol.2016 No.04

        Human body and head lice are obligatory human ectoparasites. Although both body and head lice belong to a single species, Pediculus humanus, only body lice are known to be a vector of several bacterial diseases. The higher vector competence of body lice is assumed to be due to their weaker immune response than that of head lice. To test this hypothesis, immune reactions were compared between body and head lice following infections by two model bacteria, Staphylococcus aureus and Escherichia coli, and a human pathogen, Bartonella quintana. Following dermal or oral challenge, the number of these bacteria increased both in hemocoel and alimentary tract of body lice but not in head lice and the viability of the B. quintana was significantly higher in body louse feces, the major route of infection to human. In addition, body lice showed the lower basal/induced transcription level of major immune genes, cytotoxic reactive oxygen species and phagocytosis activity compared with head lice. These findings suggest that a reduced immune response may be responsible, in part, for the increased proliferation and excretion of viable bacteria which are associated with the high level of human infectivity seen in body versus head lice.

      • Proliferation and Excretion of Bartonella quintana in Body and Head Lice Following Oral Challenge

        Ju Hyeon Kim,Domenic J. Previte,Kyong Sup Yoon,John M. Clark,Si Hyeock Lee 한국응용곤충학회 2013 한국응용곤충학회 학술대회논문집 Vol.2013 No.04

        The body and head lice (Pediculus humanus humanus and Pediculus humanus capitis, respectively) are hematophagous ectoparasites of humans and only the body louse between two is known to transmit three bacterial diseases through its feces. The proliferation profiles of Bartonella quintana, the causative agent of trench fever, inside the louse body and its excretion patterns were investigated in the two louse subspecies following oral challenge with B. quintana-infected blood meal. The initial density of B. quintana was sustained inside head lice without any noticeable proliferation for the entire period after infection. In contrast, B. quintana proliferated rapidly inside body lice and the maximum density reached at 10 days post-infection. The numbers of bacteria detected in feces from infected lice were almost the same and steadily decreased over time in both body and head lice. Nevertheless, the viability of the bacteria, as determined by fluorescence, was significantly higher in body louse feces, especially at 1 day post-infection and this tendency lasted for 11 days. These findings suggest that excretion of feces containing more viable B. quintana that is proliferated inside body lice following ingestion of infected blood meal is responsible for the higher vector competence of body lice.

      • Knockdown Resistance Allele Frequencies in North American Head Louse (Anoplura: Pediculidae) Populations

        Yoon, K.S.,Previte, D.J.,Hodgdon, H.E.,Poole, B.C.,Kwon, D.H.,El-Ghar, G.E.A.,Lee, S.H.,Clark, J.M. ESA ENTOMOLOGICAL SOCIETY OF AMERICA 2014 Journal of medical entomology Vol.51 No.2

        The study examines the extent and frequency of a knockdown-type resistance allele ( kdr type) in North American populations of human head lice. Lice were collected from 32 locations in Canada and the United States. DNA was extracted from individual lice and used to determine their zygosity using the serial invasive signal amplification technique to detect the kdr-type T917I ( TI) mutation, which is most responsible for nerve insensitivity that results in the kdr phenotype and permethrin resistance. Previously sampled sites were resampled to determine if the frequency of the TI mutation was changing. The TI frequency was also reevaluated using a quantitative sequencing method on pooled DNA samples from selected sites to validate this population genotyping method. Genotyping substantiated that TI occurs at high levels in North American lice ( 88.4%). Overall, the TI frequency in U. S. lice was 84.4% from 1999 to 2009, increased to 99.6% from 2007 to 2009, and was 97.1% in Canadian lice in 2008. Genotyping results using the serial invasive signal ampli_cation reaction ( 99.54%) and quantitative sequencing ( 99.45%) techniques were highly correlated. Thus, the frequencies of TI in North American head louse populations were found to be uniformly high, which may be due to the high selection pressure from the intensive and widespread use of the pyrethrins- or pyrethroid- based pediculicides over many years, and is likely a main cause of increased pediculosis and failure of pyrethrins- or permethrin- based products in Canada and the United States. Alternative approaches to treatment of head lice infestations are critically needed.

      • KCI등재

        Comparison of the immune response in alimentary tract tissues from body versus head lice following Escherichia coli oral infection

        Ju Hyeon Kim,Kyong Sup Yoon,Domenic J. Previte,Barry R. Pittendrigh,J. Marshall Clark,이시혁 한국응용곤충학회 2012 Journal of Asia-Pacific Entomology Vol.15 No.3

        Human body and head lice have been hematophagous ectoparasites of humans for thousands of years. Although both body and head lice belong to a single species, Pediculus humanus, only body lice are known to transmit several bacterial diseases to humans. This difference in vector competence is assumed to be due to their different immune responses. Here, the immune reactions in the alimentary tract were investigated in both body and head lice following oral challenge of Escherichia coli as a model Gram-negative bacterium. In proliferation assay, head lice suppressed the growth of E. coli effectively at the early stage of infection,resulting in gradual reduction of E. coli number in alimentary tract tissues. In contrast, the number of E. coli steadily increased in alimentary tract tissues of body lice. No apparent alteration of transcription was observed following E. coli challenge in three important genes for the humoral immune responses, peptidoglycan recognition protein as a recognition gene and defensin 1 and defensin 2 as effector genes. Nevertheless, the basal transcription levels of these genes were higher in the gut tissues of body versus head lice. Considering that there is no cellular immune reaction in gut tissues, these findings suggest that the higher constitutive transcription levels of major immune genes in head lice can contribute to their rapid defense and enhanced immune capacity against intestinal bacterial infection.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼