RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        A simple procedure to evaluate the wind-induced acceleration in tall buildings: an application to Mexico

        Pozos-Estrada, Adrian Techno-Press 2018 Wind and Structures, An International Journal (WAS Vol.27 No.5

        Tall buildings are subjected to wind loading that can cause excessive wind-induced vibration. This vibration can affect the activities of the inhabitants of a building and in some cases fear for safety. Many codes and standards propose the use of curves of perception of acceleration that can be used to verify the serviceability limit state; however, these curves of perception do not take into account the uncertainty in wind-climate, structural properties, perception of motion and maximum response. The main objective of this study is to develop an empirical expression that includes these uncertainties in order to be incorporated into a simple procedure to evaluate the wind-induced acceleration in tall buildings. The use of the proposed procedure is described with a numerical example of a tall building located in Mexico.

      • SCIESCOPUS

        Reliability of structures with tuned mass dampers under wind-induced motion: a serviceability consideration

        Pozos-Estrada, A.,Hong, H.P.,Galsworthy, J.K. Techno-Press 2011 Wind and Structures, An International Journal (WAS Vol.14 No.2

        Excessive wind-induced motion in tall buildings can cause discomfort, affect health, and disrupt the daily activities of the occupants of a building. Dynamic vibration absorbers such as the tuned mass dampers (TMDs) can be used to reduce the wind-induced motion below a specified tolerable serviceability limit state (SLS) criterion. This study investigates whether the same probability of not exceeding specified wind-induced motion levels can be achieved by torsionally sensitive structures without/with linear/nonlinear TMDs subjected to partially correlated wind forces, if they are designed to just meet the same SLS criterion. For the analyses, different structures and the uncertainty in the response, wind load and perception of motion is considered. Numerical results indicate that for structures that are designed or retrofitted without or with optimum linear TMDs and satisfying the same SLS criterion, their probability of exceeding the considered criterion is very consistent, if the inherent correlation between the wind forces is considered in design. However, this consistency deteriorates if nonlinear TMDs are employed. Furthermore, if the correlation is ignored in the design, in many cases a slightly unconservative design, as compared to the designed by considering correlation, is achieved.

      • KCI등재

        Reliability of structures with tuned mass dampers under wind-induced motion: a serviceability consideration

        A. Pozos-Estrada,J.K. Galsworthy,H. P. Hong 한국풍공학회 2011 Wind and Structures, An International Journal (WAS Vol.14 No.2

        Excessive wind-induced motion in tall buildings can cause discomfort, affect health, and disrupt the daily activities of the occupants of a building. Dynamic vibration absorbers such as the tuned mass dampers (TMDs) can be used to reduce the wind-induced motion below a specified tolerable serviceability limit state (SLS) criterion. This study investigates whether the same probability of not exceeding specified wind-induced motion levels can be achieved by torsionally sensitive structures without/with linear/nonlinear TMDs subjected to partially correlated wind forces, if they are designed to just meet the same SLS criterion. For the analyses, different structures and the uncertainty in the response,wind load and perception of motion is considered. Numerical results indicate that for structures that are designed or retrofitted without or with optimum linear TMDs and satisfying the same SLS criterion, their probability of exceeding the considered criterion is very consistent, if the inherent correlation between the wind forces is considered in design. However, this consistency deteriorates if nonlinear TMDs are employed. Furthermore, if the correlation is ignored in the design, in many cases a slightly unconservative design, as compared to the designed by considering correlation, is achieved.

      • KCI등재

        A simple procedure to evaluate the wind-induced acceleration in tall buildings: an application to Mexico

        Adrian Pozos-Estrada 한국풍공학회 2018 Wind and Structures, An International Journal (WAS Vol.27 No.5

        Tall buildings are subjected to wind loading that can cause excessive wind-induced vibration. This vibration can affect the activities of the inhabitants of a building and in some cases fear for safety. Many codes and standards propose the use of curves of perception of acceleration that can be used to verify the serviceability limit state; however, these curves of perception do not take into account the uncertainty in wind-climate, structural properties, perception of motion and maximum response. The main objective of this study is to develop an empirical expression that includes these uncertainties in order to be incorporated into a simple procedure to evaluate the wind-induced acceleration in tall buildings. The use of the proposed procedure is described with a numerical example of a tall building located in Mexico.

      • KCI등재

        RANS Simulation of Wind Loading on Vaulted Canopy Roofs

        Edmundo Amaya-Gallardo,Adrián Pozos-Estrada,Roberto Gómez 대한토목학회 2021 KSCE JOURNAL OF CIVIL ENGINEERING Vol.25 No.12

        The use of isolated vaulted canopy roofs (VCR) for schools, emerging shelters, sports and recreational centers, among others, is quite popular worldwide. However, the design of such structures to resist wind effects is usually a problem due to the scarce technical information available in the literature. As an alternative resource, in the present research, wind effects on this type of structures immersed in the atmospheric boundary layer (ABL) are studied numerically by using the 3D Reynolds averaged Navier Stokes (RANS) approach considering different aspect ratios and wind directions. Since wind tunnel testing information for these structures is limited, experimental results of a Gabled Canopy Roof (GCR) as well as some experimental results for VCR are used as a validation source for the numerical models. Based on this validation, the simulation results of the mean wind loads of VCR appear to be reasonably good. The numerical results are used to study the mean net-pressure coefficients (CPN) over the VCR models and to establish the theoretical bases for coding them. It was found that the CPN are very sensitive to the VCR curvature and wind direction (90°, 75°, and 60°), and to a less extent to the plan and elevation geometric ratios. Further, it was also found that the use of GCR CPN for the design of VCR, as is usually done in professional practice, could lead to important differences in the magnitude of pressure coefficients and pressure distribution regarding actual VCR CPN and its distribution. A detailed analysis of the CPN for VCRs is presented.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼