RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        An Insight Into the Physico-Mechanical Signatures of Silylated Graphene Oxide in Poly(ethylene methyl acrylate) Copolymeric Thermoplastic Matrix

        Sayan Ganguly,Subhadip Mondal,Poushali Das,Poushali Bhawal,Tushar Kanti Das,Sabyasachi Ghosh,Sanjay Remanan,Narayan Chandra Das 한국고분자학회 2019 Macromolecular Research Vol.27 No.3

        Dispersion of graphene as nano-building block in polymer matrix is challenging for developing high strength polymer nanocomposites. Tuning of surface polarity can be an effective pathway to resolve this issue of dispersion. Besides this, the polymer matrix (Ethylene methyl acrylate or EMA) has been chosen here judicially due to its polar-nonpolar alternating copolymeric segments which indirectly facilitated dispersion of nanofillers. Herein, graphene oxide has been lyophilically modified by virtue of surface grafting phenomenon with the help of di-halo substituted silane. The most surprising outcome which has been nurtured is their superior dispersion, improvement in physico-mechanical features, and transparency without affecting the inherent compliance of pristine polymer. The transmission electron microscopic image of silane functionalized graphene oxide (GOF) is showing surface roughness which has immense effect of physisorption and mechanical anchoring of polymer chains over GOF nano-sheets. Such physical interaction has enough impact on mechanical properties which has been discussed here. Moreover, the deterioration of transparency was not so much affected after loading of GOF filler. The filler distribution also has been confirmed in the light of small angle X-ray scattering (SAXS) study. Thermal treatment has been conducted for composites which accounted high thermal stability comparatively to pristine polymer.

      • KCI등재

        Fabrication of Reduced Graphene Oxide/Silver Nanoparticles Decorated Conductive Cotton Fabric for High Performing Electromagnetic Interference Shielding and Antibacterial Application

        Sabyasachi Ghosh,Sayan Ganguly,Poushali Das,Tushar Kanti Das,Madhuparna Bose,Nikhil K. Singha,Amit Kumar Das,Narayan Ch. Das 한국섬유공학회 2019 Fibers and polymers Vol.20 No.6

        Conductive filler loading in the polymer matrix is a common practice to transform insulative polymers toconducting composites. In case of textiles, the highly promising approach has been coined by virtue of fabricating withconductive adhesive homogeneous coating. The present fabrication approach has been developed by two-stage wet mixingtechnique including synthesis of silver nanoparticles decorated graphene sheets (rGO/Ag), followed by the preparation ofconducting coating by non-ionic polymer adhesive. The novelty lies in the choice of conductive material and coating strategyto make lightweight and flexible smart electronic fabric. In order to protect the radiation pollution from the immense use ofelectronic devices and gadgets, the coated textiles can be an excellent replacement of other commercially available polymercoatings. The electromagnetic interference (EMI) shielding effectiveness of the prepared coated textile was 27.36 dB in the Xband (8.2-12.4 GHz). Besides this it is worth mentioning that our developed coated fabric was enough conductive to light upa series of 57 LEDs with high intensity. Last but not the least this work also reconnoitres bactericidal feature against E. coli.

      • KCI등재

        Current scenario and recent advancement of doped carbon dots: a short review scientocracy update (2013–2022)

        Ghosh Trisita,Das Tushar Kanti,Das Poushali,Banerji Pallab,Das Narayan Ch. 한국탄소학회 2022 Carbon Letters Vol.32 No.4

        The serendipitous uncovering of carbon dot (CQDs) as budding candidate of carbonaceous nanomaterial has become now one of the hot topics in the research of material science and technology. The unique features of CQDs such as photo-physical properties, excellent biocompatibility, ease of synthesis, good aqueous dispersity, high chemical stability, and accessible functional groups for further modification make them one of the promising competitors in biological, photonic and energy-related applications. Although some review articles on CQDs have been published, they typically cover all areas of CQDs applications, and no particular evaluation on the advancement of doped CQDs (D-CQDs) has been reported so far. In this review, we demonstrated characteristic features of D-CQDs focusing on doping strategies, discussion on recently adopted various synthesis processes, its applications and its qualitative comparison with each other. The recently developed concept on understanding the structure and optical properties of D-CQDs are also briefly described followed by their application on various fields primarily concentrated on bio-imaging and sensing applications. We also speculate its use in a variety of intriguing fields and its perspectives in near future.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼