RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        High-Power-Density Power Conversion Systems for HVDC-Connected Offshore Wind Farms

        Parastar, Amir,Seok, Jul-Ki The Korean Institute of Power Electronics 2013 JOURNAL OF POWER ELECTRONICS Vol.13 No.5

        Offshore wind farms are rapidly growing owing to their comparatively more stable wind conditions than onshore and land-based wind farms. The power capacity of offshore wind turbines has been increased to 5MW in order to capture a larger amount of wind energy, which results in an increase of each component's size. Furthermore, the weight of the marine turbine components installed in the nacelle directly influences the total mechanical design, as well as the operation and maintenance (O&M) costs. A reduction in the weight of the nacelle allows for cost-effective tower and foundation structures. On the other hand, longer transmission distances from an offshore wind turbine to the load leads to higher energy losses. In this regard, DC transmission is more useful than AC transmission in terms of efficiency because no reactive power is generated/consumed by DC transmission cables. This paper describes some of the challenges and difficulties faced in designing high-power-density power conversion systems (HPDPCSs) for offshore wind turbines. A new approach for high gain/high voltage systems is introduced using transformerless power conversion technologies. Finally, the proposed converter is evaluated in terms of step-up conversion ratio, device number, modulation, and costs.

      • SCISCIESCOPUS

        Multilevel Modular DC/DC Power Converter for High-Voltage DC-Connected Offshore Wind Energy Applications

        Parastar, Amir,Yong Cheol Kang,Jul-Ki Seok Institute of Electrical and Electronics Engineers 2015 IEEE transactions on industrial electronics Vol. No.

        <P>Recently, the interest in offshore wind farms has been significantly increased because of the stronger and more stable winds at sea, which will lead to a higher power production. DC/DC power conversion solutions are becoming more popular for fulfilling the growing challenges in the high-voltage (HV) dc-connected offshore wind power industry. This paper presents several multilevel modular dc/dc conversion systems based on the capacitor-clamped (CC) module concept for high-power offshore wind energy applications. Two types of the CC modules, namely, the double-switch (DS) module and the switchless (SL) module, are discussed. A soft-switching technique is adopted to achieve minimal switching losses and the maximum system efficiency. Theoretical analysis is carried out for the 2n+1-level cascaded configurations based on the CC modules. The inherent interleaving property of the proposed configurations effectively reduces the output voltage ripple without adding extra components. A cascaded hybrid topology is developed by the combination of DS and SL modules. The proposed hybrid topology achieves higher efficiency and lower component count. The cascaded hybrid approach is evaluated in terms of the power device count, reliability, and efficiency against other HV dc/dc topologies to demonstrate its advantage for HVDC-connected offshore wind farms. The experimental results of two 5-kW prototype CC converters are presented to validate the theoretical analysis and principles as well as attest the feasibility of the proposed topologies.</P>

      • SCIESCOPUS

        High-Gain Resonant Switched-Capacitor Cell-Based DC/DC Converter for Offshore Wind Energy Systems

        Parastar, Amir,Jul-Ki Seok Institute of Electrical and Electronics Engineers 2015 IEEE transactions on power electronics Vol. No.

        <P>With the increasing integration of renewable energy generation into high-power grids, transmission at the dc level is becoming increasingly more useful than ac transmission. In this regard, emerging applications, such as offshore wind farms, require a high voltage gain dc/dc conversion system to interface with high-power transmission networks. This paper presents a new high-voltage gain resonant switched-capacitor dc/dc converter for high-power offshore wind energy systems. The proposed dc/dc converter is characterized by the resonant switching transitions to achieve minimal switching losses and maximum system efficiency. Therefore, a higher switching frequency is conceivable to attain a higher power density. The double stage output voltage of the proposed converter operates at seven times as high as the input voltage with a small device count. The output capacitors are charged and discharged continuously by a 180° phase shift with respect to each other to eliminate the output voltage ripples with the low capacitance requirements. The proposed series-modular and cascade configurations show the intrinsic advantage of being readily applicable to multistage power switching converters. The developed topology has been implemented on a 5-kW prototype converter to test its feasibility.</P>

      • KCI등재

        High-Power-Density Power Conversion Systems for HVDC-Connected Offshore Wind Farms

        Amir Parastar,Jul-Ki Seok 전력전자학회 2013 JOURNAL OF POWER ELECTRONICS Vol.13 No.5

        Offshore wind farms are rapidly growing owing to their comparatively more stable wind conditions than onshore and land-based wind farms. The power capacity of offshore wind turbines has been increased to 5MW in order to capture a larger amount of wind energy, which results in an increase of each component’s size. Furthermore, the weight of the marine turbine components installed in the nacelle directly influences the total mechanical design, as well as the operation and maintenance (O&M) costs. A reduction in the weight of the nacelle allows for cost-effective tower and foundation structures. On the other hand, longer transmission distances from an offshore wind turbine to the load leads to higher energy losses. In this regard, DC transmission is more useful than AC transmission in terms of efficiency because no reactive power is generated/consumed by DC transmission cables. This paper describes some of the challenges and difficulties faced in designing high-power-density power conversion systems (HPDPCSs) for offshore wind turbines. A new approach for high gain/high voltage systems is introduced using transformerless power conversion technologies. Finally, the proposed converter is evaluated in terms of step-up conversion ratio, device number, modulation, and costs.

      • Disturbance Decoupling Control of Voice Coil Motors for Precise Automated Manufacturing Processes

        Sung-Kuk Kim,Jie Shi,Young-Sun Lee,Se-Hwan Kim,Amir Parastar,Jul-Ki Seok 전력전자학회 2011 ICPE(ISPE)논문집 Vol.2011 No.5

        In this paper, a controller design of a voice coil motor (VCM) with enhanced disturbance input decoupling performance, especially for precise automated manufacturing processes, is proposed. To enhance the force control accuracy, a disturbance state filter for force control is applied to estimate and compensate for the varying dynamics of VCM systems, such as nonlinearly variable loads and other uncertainties. The state filter estimation accuracy in the presence of system parameter errors is fully analyzed. In addition, the proposed disturbance decoupling method is computationally efficient and robust to other parameter errors. The proposed algorithm is implemented in a developed VCM actuator and verified to be appropriate for a VCM drive system with unknown disturbances.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼