RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Car style-holon recognition in computer-aided design

        Egon Ostrosi,Jean-Bernard Bluntzer,Zaifang Zhang,Josip Stjepandic´ 한국CDE학회 2019 Journal of computational design and engineering Vol.6 No.4

        Multi-scale design can presumably stimulate greater intelligence in computer-aided design (CAD). Using the style-holon concept, this paper proposes a computational approach to address multi-scale style recognition for automobiles. A style-holon is both a whole—it contains sub-styles of which it is com-posed—as well as a part of a broader style. In this paper, we first apply a variable precision rough set-based approach to car evaluation and ranking. Secondly, we extracted and subsequently computed the each car’s characteristic lines from the CAD models. Finally, we identified style-holons using the property of a double-headed style-holon. A style-holon is necessarily included in a typical vertical arrangement with progressive accumulation and forms a nested hierarchical order called a holarchy of styles.We adopted an interactive cluster analysis to recognize style-holons. Our results demonstrate that car style depended on each brand’s individual strategy: a car is a form endowed with some structural stability. The style-holon also demonstrated that the evolution of characteristic lines should preserve the property of functional homeostasis (the same functional states) as well as the property of homeorhesis (the same stable course of change). For many car companies, stable brand recognition is an important design specification. The proposed approach was used to analyse a set of car styles as well as to assist in the design of char-acteristic model lines. A designer can also use this approach to evaluate whether or not the strategic requirement—style alignment with the style-holon of benchmarked cars--is satisfied.

      • KCI등재

        Intelligent agents for feature modelling in computer aided design

        Alain-Jérôme Fougères,Egon Ostrosi 한국CDE학회 2018 Journal of computational design and engineering Vol.5 No.1

        CAD modelling can be referred to as the process of generating an integrated multiple view model as a representation of multiple views of engineering design. In many situations, a change in the model of one view may conflict with the models of other views. In such situations, the model of some views needs to be adapted in order to make all models consistent. Thus, CAD models should be capable of adapting themselves to new situations. Recently, agent based technologies have been considered in order to increase both knowledge level and intelligence of real and virtual objects. The contribution of this paper consists in introducing the intelligent agents in intelligent CAD modelling. The proposed agents are elementary geometrical and topological objects. They incorporate the functions of observation, decision and action, and possess their own knowledge. Agents have the capacity of communication and inference based on the feature grammars. They are modelled as bio-dynamic objects that enjoy the properties of fusion, division and multiplication. Being aware of the context, the proposed agents interact to form potential regional transitory communities, called regions. Being aware of their belonging in a region, agents interact by generating virtual links (virtual extensions). These virtual links produce: (a) fusion of agents, (b) division of agents and c) multiplication of agents. The emerged agents interact with the other agents in a region to recognize each other and to form specific sub-communities, called intelligent features. From a CAD software development point of view, this paper advocates the idea of a new phase of CAD system development based on the agent-oriented programming (AOP) paradigm.

      • KCI등재

        Intelligent agents for feature modelling in computer aided design

        Fougeres, Alain-Jerome,Ostrosi, Egon Society for Computational Design and Engineering 2018 Journal of computational design and engineering Vol.5 No.1

        CAD modelling can be referred to as the process of generating an integrated multiple view model as a representation of multiple views of engineering design. In many situations, a change in the model of one view may conflict with the models of other views. In such situations, the model of some views needs to be adapted in order to make all models consistent. Thus, CAD models should be capable of adapting themselves to new situations. Recently, agent based technologies have been considered in order to increase both knowledge level and intelligence of real and virtual objects. The contribution of this paper consists in introducing the intelligent agents in intelligent CAD modelling. The proposed agents are elementary geometrical and topological objects. They incorporate the functions of observation, decision and action, and possess their own knowledge. Agents have the capacity of communication and inference based on the feature grammars. They are modelled as bio-dynamic objects that enjoy the properties of fusion, division and multiplication. Being aware of the context, the proposed agents interact to form potential regional transitory communities, called regions. Being aware of their belonging in a region, agents interact by generating virtual links (virtual extensions). These virtual links produce: (a) fusion of agents, (b) division of agents and c) multiplication of agents. The emerged agents interact with the other agents in a region to recognize each other and to form specific sub-communities, called intelligent features. From a CAD software development point of view, this paper advocates the idea of a new phase of CAD system development based on the agent-oriented programming (AOP) paradigm.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼