RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A proposal for empowering slum dwellers as a viable way of addressing urbanization challenges in Katanga slum, Kampala, Uganda

        Godfrey Omulo,Musinguzi Muhsin,Ismail Kasana,Resty Nabaterega 대한환경공학회 2017 Environmental Engineering Research Vol.22 No.4

        Slum settlement, a direct result of the rapid worldwide urbanization is a common site in most developing countries. Uganda is among the top African countries with high number of slums. The status of Katanga slum located in the low-lands between Mulago national hospital and Makerere University is a typical of many other slums within Uganda. This project proposal seeks to tackle urbanization challenges by specializing in slum upgrading as a sustainable way of curbing the menace. An integrated toilet, biogas, poultry and backyard gardening project is proposed as a channel of boosting the Katanga slum dwellers’ economic, sanitation and domestic energy status. Designed to serve up to 30 households, the project will utilize residual wastes from poultry houses and toilets to produce biogas and slurry. The biogas yield will provide clean cooking fuel and energy for lighting, while the slurry used as organic fertilizers to improve vegetable yields. The social, economic and environmental impacts of the project will empower the vulnerable women and children within the slums and reduce water pollution and land degradation. This affordable project can be applied in developing countries experiencing slum settlement challenges as a strategy for reducing urbanization pressure.

      • KCI등재

        Optimizing slow pyrolysis of banana peels wastes using response surface methodology

        Godfrey Omulo,Noble Banadda,Isa Kabenge,Jeffrey Seay 대한환경공학회 2019 Environmental Engineering Research Vol.24 No.2

        Renewable energy from biomass and biodegradable wastes can significantly supplement the global energy demand if properly harnessed. Pyrolysis is the most profound modern technique that has proved effective and efficient in the energy conversion of biomass to yield various products like bio-oil, biochar, and syngas. This study focuses on optimization of slow pyrolysis of banana peels waste to yield banana peels vinegar, tar and biochar as bio-infrastructure products. Response surface methodology using central composite design was used to determine the optimum conditions for the banana wastes using a batch reactor pyrolysis system. Three factors namely heating temperature (350-550℃), sample mass (200-800 g) and residence time (45-90 min) were varied with a total of 20 individual experiments. The optimal conditions for wood vinegar yield (48.01%) were 362.6℃, 989.9 g and 104.2 min for peels and biochar yield (30.10%) were 585.9℃, 989.9 g and 104.2 min. The slow pyrolysis showed significant energy conversion efficiencies of about 90% at p-value ≤ 0.05. These research findings are of primary importance to Uganda considering the abundant banana wastes amounting to 17.5 million tonnes generated annually, thus using them as pyrolysis feedstock can boost the country’s energy status.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼