RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Determination of earthquake safety of RC frame structures using an energy-based approach

        Onur Merter,Taner Ucar,Mustafa Duzgun 사단법인 한국계산역학회 2017 Computers and Concrete, An International Journal Vol.19 No.6

        An energy-based approach for determining earthquake safety of reinforced concrete frame structures is presented. The developed approach is based on comparison of plastic energy capacities of the structures with plastic energy demands obtained for selected earthquake records. Plastic energy capacities of the selected reinforced concrete frames are determined graphically by analyzing plastic hinge regions with the developed equations. Seven earthquake records are chosen to perform the nonlinear time history analyses. Earthquake plastic energy demands are determined from nonlinear time history analyses and hysteretic behavior of earthquakes is converted to monotonic behavior by using nonlinear moment-rotation relations of plastic hinges and plastic axial deformations in columns. Earthquake safety of selected reinforced concrete frames is assessed by using plastic energy capacity graphs and earthquake plastic energy demands. The plastic energy dissipation capacities of the frame structures are examined whether these capacities can withstand the plastic energy demands for selected earthquakes or not. The displacements correspond to the mean plastic energy demands are obtained quite close to the displacements determined by using the procedures given in different seismic design codes.

      • KCI등재

        Energy-based design base shear for RC frames considering global failure mechanism and reduced hysteretic behavior

        Onur Merter,Taner Ucar 국제구조공학회 2017 Structural Engineering and Mechanics, An Int'l Jou Vol.63 No.1

        A nonlinear static procedure considering work-energy principle and global failure mechanism to estimate base shears of reinforced concrete (RC) frame-type structures is presented. The relative energy equation comprising of elastic vibrational energy, plastic strain energy and seismic input energy is obtained. The input energy is modified with a factor depending on damping ratio and ductility, and the energy that contributes to damage is obtained. The plastic energy is decreased with a factor to consider the reduced hysteretic behavior of RC members. Given the pre-selected failure mechanism, the modified energy balance equality is written using various approximations for modification factors of input energy and plastic energy in scientific literature. External work done by the design lateral forces distributed to story levels in accordance with Turkish Seismic Design Code is calculated considering the target plastic drift. Equating the plastic energy obtained from energy balance to external work done by the equivalent inertia forces considering, a total of 16 energy-based base shears for each frame are derived considering different combinations of modification factors. Ductility related parameters of modification factors are determined from pushover analysis. Relative input energy of multi degree of freedom (MDOF) system is approximated by using the modal-energy-decomposition approach. Energy-based design base shears are compared with those obtained from nonlinear time history (NLTH) analysis using recorded accelerograms. It is found that some of the energy-based base shears are in reasonable agreement with the mean base shear obtained from NLTH analysis.

      • SCIESCOPUS

        A study on determination of target displacement of RC frames using PSV spectrum and energy-balance concept

        Ucar, Taner,Merter, Onur,Duzgun, Mustafa Techno-Press 2012 Structural Engineering and Mechanics, An Int'l Jou Vol.41 No.6

        The objective of this paper is to present an energy-based method for calculating target displacement of RC structures. The method, which uses the Newmark-Hall pseudo-velocity spectrum, is called the "Pseudo-velocity Spectrum (PSVS) Method". The method is based on the energy balance concept that uses the equality of energy demand and energy capacity of the structure. First, nonlinear static analyses are performed for five, eight and ten-story RC frame structures and pushover curves are obtained. Then the pushover curves are converted to energy capacity diagrams. Seven strong ground motions that were recorded at different soil sites in Turkey are used to obtain the pseudo-acceleration and the pseudo-velocity response spectra. Later, the response spectra are idealised with the Newmark-Hall approximation. Afterwards, energy demands for the RC structures are calculated using the idealised pseudo-velocity spectrum. The displacements, obtained from the energy capacity diagrams that fit to the energy demand values of the RC structures, are accepted as the energy-based performance point of the structures. Consequently, the target displacement values determined from the PSVS Method are checked using the displacement-based successive approach in the Turkish Seismic Design Code. The results show that the target displacements of RC frame structures obtained from the PSVS Method are very close to the values calculated by the approach given in the Turkish Seismic Design Code.

      • KCI등재

        Effect of design spectral shape on inelastic response of RC frames subjected to spectrum matched ground motions

        Taner Ucar,Onur Merter 국제구조공학회 2019 Structural Engineering and Mechanics, An Int'l Jou Vol.69 No.3

        In current seismic design codes, various elastic design acceleration spectra are defined considering different seismological and soil characteristics and are widely used tool for calculation of seismic loads acting on structures. Response spectrum analyses directly use the elastic design acceleration spectra whereas time history analyses use acceleration records of earthquakes whose acceleration spectra fit the design spectra of seismic codes. Due to the fact that obtaining coherent structural response quantities with the seismic design code considerations is a desired circumstance in dynamic analyses, the response spectra of earthquake records used in time history analyses had better fit to the design acceleration spectra of seismic codes. This paper evaluates structural response distributions of multi-story reinforced concrete frames obtained from nonlinear time history analyses which are performed by using the scaled earthquake records compatible with various elastic design spectra. Time domain scaling procedure is used while processing the response spectrum of real accelerograms to fit the design acceleration spectra. The elastic acceleration design spectra of Turkish Seismic Design Code 2007, Uniform Building Code 1997 and Eurocode 8 are considered as target spectra in the scaling procedure. Soil classes in different seismic codes are appropriately matched up with each other according to VS30 values. The maximum roof displacements and the total base shears of considered frame structures are determined from nonlinear time history analyses using the scaled earthquake records and the results are presented by graphs and tables. Coherent structural response quantities reflecting the influence of elastic design spectra of various seismic codes are obtained.

      • KCI등재후보

        Derivation of yield force coefficient for RC frames considering energy balance and P-delta effects

        Taner Ucar,Onur Merter 국제구조공학회 2021 Structural Engineering and Mechanics, An Int'l Jou Vol.79 No.4

        Currently, prominent energy balance concept can efficiently be used to calculate the yield base shear force of structures. Energy balance equation is an additional constraint for the balance of seismic input energy by the energy absorption of the structure. This equation can be defined as the sum of elastic and plastic energies of structural systems using elastic and plastic load-deformation characteristics and the total energy dissipation capacity can finally be equated to the seismic energy demand. The objective of this paper is to present a procedure for the determination of energy-based yield force coefficient of reinforced concrete (RC) frame structures considering P-delta effects. The total of elastic and plastic energies are computed by means of elastic spectral velocity and energy modification factor, which is originally derived for structural systems with geometric nonlinearity. Total inelastic energy of single-degree-of-freedom (SDOF) system is transformed into the total inelastic energy of the multi-degree-of-freedom (MDOF) system using the conversion based on structural dynamics. Plastic energy of MDOF system is formulated after total seismic energy demand is obtained. It is accordingly equated to the total work done by inelastic MDOF structure with P-delta effects and consequently, a dimensionless yield force coefficient is derived. Nonlinear static analyses are performed for selected multi-story RC frames and yield force coefficients are compared with the results of the energy-based formulation. The results show that the proposed formulation taking P-delta effects into account can be effectively used to estimate the yield force coefficient of RC frame structures.

      • KCI등재

        A study on determination of target displacement of RC frames using PSV spectrum and energy-balance concept

        Taner Ucar,Onur Merter,Mustafa Duzgun 국제구조공학회 2012 Structural Engineering and Mechanics, An Int'l Jou Vol.41 No.6

        The objective of this paper is to present an energy-based method for calculating target displacement of RC structures. The method, which uses the Newmark-Hall pseudo-velocity spectrum, is called the “Pseudo-velocity Spectrum (PSVS) Method”. The method is based on the energy balance concept that uses the equality of energy demand and energy capacity of the structure. First, nonlinear static analyses are performed for five, eight and ten-story RC frame structures and pushover curves are obtained. Then the pushover curves are converted to energy capacity diagrams. Seven strong ground motions that were recorded at different soil sites in Turkey are used to obtain the pseudo-acceleration and the pseudo-velocity response spectra. Later, the response spectra are idealised with the Newmark-Hall approximation. Afterwards, energy demands for the RC structures are calculated using the idealised pseudo-velocity spectrum. The displacements, obtained from the energy capacity diagrams that fit to the energy demand values of the RC structures, are accepted as the energy-based performance point of the structures. Consequently, the target displacement values determined from the PSVS Method are checked using the displacement-based successive approach in the Turkish Seismic Design Code. The results show that the target displacements of RC frame structures obtained from the PSVS Method are very close to the values calculated by the approach given in the Turkish Seismic Design Code.

      • KCI등재

        Determination of lateral strength and ductility characteristics of existing mid-rise RC buildings in Turkey

        Taner Ucar,Onur Merter,Mustafa Duzgun 사단법인 한국계산역학회 2015 Computers and Concrete, An International Journal Vol.16 No.3

        This paper presents a comprehensive work on determination of yield base shear coefficient and displacement ductility factor of three to eight story actual reinforced concrete buildings, instead of using generic frames. The building data is provided by a walkdown survey in different locations of the pilot areas. Very detailed three dimensional models of the selected buildings are generated by using the data provided in architectural and reinforcement projects. Capacity curves of the buildings are obtained from nonlinear static pushover analyses and each capacity curve is approximated with a bilinear curve. Characteristic points of capacity curve, the yield base shear capacity, the yield displacement and the ultimate displacement capacity, are determined. The calculated values of the yield base shear coefficients and the displacement ductility factors for directions into consideration are compared by those expected values given in different versions of Turkish Seismic Design Code. Although having sufficient lateral strength capacities, the deformation capacities of these typical mid-rise reinforced concrete buildings are found to be considerably low.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼