RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Genome-wide identification and evolution of TC1/Mariner in the silkworm (Bombyx mori) genome

        Li‑Qin Xie,Ping‑Lan Wang,Shen‑Hua Jiang,Ze Zhang,Hua‑Hao Zhang 한국유전학회 2018 Genes & Genomics Vol.40 No.5

        TC1/Mariner transposons belong to class II transposable elements (TEs) that use DNA-mediated “cut and paste” mechanism to transpose, and they have been identified in almost all organisms. Although silkworm (Bombyx mori) has a large amount of TC1/Mariner elements, the genome wide information of this superfamily in the silkworm is unknown. In this study, we have identified 2670 TC1/Mariner (Bmmar) elements in the silkworm genome. All the TEs were classified into 22 families by means of fgclust, a tool of repetitive sequence classification, seven of which was first reported in this study. Phylogenetic and structure analyses based on the catalytic domain (DDxD/E) of transposase sequences indicated that all members of TC1/Mariner were grouped into five subgroups: Mariner, Tc1, maT, DD40D and DD41D/E. Of these five subgroups, maT rather than Mariner possessed most members of TC1/Mariner (51.23%) in the silkworm genome. In particular, phylogenetic analysis and structure analysis revealed that Bmmar15 (DD40D) formed a new basal subgroup of TC1/Mariner element in insects, which was referred to as bmori. Furthermore, we concluded that DD40D appeared to intermediate between mariner and Tc1. Finally, we estimated the insertion time for each copy of TC1/Mariner in the silkworm and found that most of members were dramatically amplified during a period from 0 to 1 mya. Moreover, the detailed functional data analysis showed that Bmmar1, Bmmar6 and Bmmar9 had EST evidence and intact transposases. These implied that TC1/Mariner might have potential transpositional activity. In conclusion, this study provides some new insights into the landscape, origin and evolution of TC1/Mariner in the insect genomes.

      • SCIEKCI등재

        Selection of Reference Genes for Real-time Quantitative PCR Normalization in the Process of Gaeumannomyces graminis var. tritici Infecting Wheat

        Xie, Li-hua,Quan, Xin,Zhang, Jie,Yang, Yan-yan,Sun, Run-hong,Xia, Ming-cong,Xue, Bao-guo,Wu, Chao,Han, Xiao-yun,Xue, Ya-nan,Yang, Li-rong The Korean Society of Plant Pathology 2019 Plant Pathology Journal Vol.35 No.1

        Gaeumannomyces graminis var. tritici is a soil borne pathogenic fungus associated with wheat roots. The accurate quantification of gene expression during the process of infection might be helpful to understand the pathogenic molecular mechanism. However, this method requires suitable reference genes for transcript normalization. In this study, nine candidate reference genes were chosen, and the specificity of the primers were investigated by melting curves of PCR products. The expression stability of these nine candidates was determined with three programs-geNorm, Norm Finder, and Best Keeper. $TUB{\beta}$ was identified as the most stable reference gene. Furthermore, the exopolygalacturonase gene (ExoPG) was selected to verify the reliability of $TUB{\beta}$ expression. The expression profile of ExoPG assessed using $TUB{\beta}$ agreed with the results of digital gene expression analysis by RNA-Seq. This study is the first systematic exploration of the optimal reference genes in the infection process of Gaeumannomyces graminis var. tritici.

      • KCI등재

        Selection of Reference Genes for Real-time Quantitative PCR Normalization in the Process of Gaeumannomyces graminis var. tritici Infecting Wheat

        Li-hua Xie,Xin Quan,Jie Zhang,Yan-yan Yang,Run-hong Sun,Ming-cong Xia,Bao-guo Xue,Chao Wu,Xiao-yun Han,Ya-nan Xue,Li-rong Yang 한국식물병리학회 2019 Plant Pathology Journal Vol.35 No.1

        Gaeumannomyces graminis var. tritici is a soil borne pathogenic fungus associated with wheat roots. The accurate quantification of gene expression during the process of infection might be helpful to understand the pathogenic molecular mechanism. However, this method requires suitable reference genes for transcript normalization. In this study, nine candidate reference genes were chosen, and the specificity of the primers were investigated by melting curves of PCR products. The expression stability of these nine candidates was determined with three programs-geNorm, Norm Finder, and Best Keeper. TUBβ was identified as the most stable reference gene. Furthermore, the exopolygalacturonase gene (ExoPG) was selected to verify the reliability of TUBβ expression. The expression profile of ExoPG assessed using TUBβ agreed with the results of digital gene expression analysis by RNA-Seq. This study is the first systematic exploration of the optimal reference genes in the infection process of Gaeumannomyces graminis var. tritici.

      • KCI등재

        Anti-inflammatory effect of hispidin on LPS induced macrophage inflammation through MAPK and JAK1/STAT3 signaling pathways

        Han Ying-Hao,Chen Dong-Qin,Jin Mei-Hua,Jin Ying-Hua,Li Jing,Shen Gui-Nan,Li Wei-Long,Gong Yi-Xi,Mao Ying-Ying,Xie Dan-Ping,Lee Dong-Seok,Yu Li-Yun,Kim Sun-Uk,김지수,권태호,Cui Yu-Dong,Sun Hu-Nan 한국응용생명화학회 2020 Applied Biological Chemistry (Appl Biol Chem) Vol.63 No.3

        Severe inflammatory reactions caused by macrophage activation can trigger a systemic immune response. In the present study, we observed the anti-inflammatory properties of hispidin on LPS induced RAW264.7 macrophage cells. Our results showed that hispidin treatment significantly reduced the production of cellular NO, IL-6 and reactive oxygen species (ROS) while has not inhibitory effect on TNF-α productions. Excitingly, hispidin treatment retains the phagocytosis ability of macrophages which enabling them to perform the function of removing foreign invaders. Signaling studies showed, hispidin treatment dramatic suppressed the LPS induced mitogen activated protein kinases (MAPK) and JAK/STAT activations. In conclusion, our findings suggest that hispidin may be a new therapeutic target for clinical treatment of macrophages-mediated inflammatory responses.

      • KCI등재

        Plant regeneration via callus-mediated organogenesis in commercial variety of Chuanbeichai No. 1 in Bupleurum chinense DC

        Li Yuchan,Zhao Jun,Chen Hua,Yu Xia,Li Hui,Zhang Yu,Feng Liang,Wu Zhe,Xie Wenlin,Hou Dabin,Yu Ma 한국식물생명공학회 2023 Plant biotechnology reports Vol.17 No.2

        Bupleurum chinense DC is an important medicinal plant with many active ingredients that are used for the treatment of different types of diseases and valued in pharmaceutical markets. In vitro shoot regeneration can efficiently contribute to the improvement of B. chinense. In the present study, we investigated the effects of the explant type and plant growth regulators (PGRs) on embryogenic callus induction and plant regeneration in B. chinense. Our investigation demonstrated that 2 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) combined with 1 mg/L thidiazuron (TDZ) played a major role in promoting callus induction from leaf, hypocotyl and stem 2 explants, whereas the most effective treatment for stem 1 callus formation was Murashige and Skoog (MS) medium supplemented with 1 mg/L 2,4-D, 0.5 mg/L 6-benzyladenine (BA) and 0.5 mg/L kinetin (Kin). The highest shoot regeneration rate (57.14%) was obtained from hypocotyl-induced calli in MS medium with 0.5 mg/L Kin after 12 weeks of cultivation. This regeneration protocol can be used in large-scale cultivation and may be useful for future genetic modifications of B. chinense.

      • SCIESCOPUSKCI등재

        Cinnamaldehyde Derivatives Inhibit Coxsackievirus B3-Induced Viral Myocarditis

        Li, Xiao-Qiang,Liu, Xiao-Xiao,Wang, Xue-Ying,Xie, Yan-Hua,Yang, Qian,Liu, Xin-Xin,Ding, Yuan-Yuan,Cao, Wei,Wang, Si-Wang The Korean Society of Applied Pharmacology 2017 Biomolecules & Therapeutics(구 응용약물학회지) Vol.25 No.3

        The chemical property of cinnamaldehyde is unstable in vivo, although early experiments have shown its obvious therapeutic effects on viral myocarditis (VMC). To overcome this problem, we used cinnamaldehyde as a leading compound to synthesize derivatives. Five derivatives of cinnamaldehyde were synthesized: 4-methylcinnamaldehyde (1), 4-chlorocinnamaldehyde (2), 4-methoxycinnamaldehyde (3), ${\alpha}$-bromo-4-methylcinnamaldehyde (4), and ${\alpha}$-bromo-4-chlorocinnamaldehyde (5). Neonatal rat cardiomyocytes and HeLa cells infected by coxsackievirus B3 (CVB3) were used to evaluate their antiviral and cytotoxic effects. In vivo BALB/c mice were infected with CVB3 for establishing VMC models. Among the derivatives, compound 4 and 5 inhibited the CVB3 in HeLa cells with the half-maximal inhibitory concentrations values of $11.38{\pm}2.22{\mu}M$ and $2.12{\pm}0.37{\mu}M$, respectively. The 50% toxic concentrations of compound 4 and 5-treated cells were 39-fold and 87-fold higher than in the cinnamaldehyde group. Compound 4 and 5 effectively reduced the viral titers and cardiac pathological changes in a dose-dependent manner. In addition, compound 4 and 5 significantly inhibited the secretion, mRNA and protein expressions of inflammatory cytokines TNF-${\alpha}$, IL-$1{\beta}$ and IL-6 in CVB3-infected cardiomyocytes, indicating that brominated cinnamaldehyde not only improved the anti-vital activities for VMC, but also had potent anti-inflammatory effects in cardiomyocytes induced by CVB3.

      • SCOPUSKCI등재

        A Density Functional Study of Furofuran Polymers as Potential Materials for Polymer Solar Cells

        Xie, Xiao-Hua,Shen, Wei,He, Rong-Xing,Li, Ming Korean Chemical Society 2013 Bulletin of the Korean Chemical Society Vol.34 No.10

        The structural, electronic, and optical properties of poly(3-hexylthiophene) (P3HT) have been comprehensively studied by density functional theory (DFT) to rationalize the experimentally observed properties. Rather, we employed periodic boundary conditions (PBC) method to simulate the polymer block, and calculated effective charge mass from the band structure calculation for describing charge transport properties. The simulated results of P3HT are consistent with the experimental results in band gaps, absorption spectra, and effective charge mass. Based on the same calculated methods as P3HT, a series of polymers have been designed on the basis of the two types of building blocks, furofurans and furofurans substituted with cyano (CN) groups, to investigate suitable polymers toward polymer solar cell (PSC) materials. The calculated results reveal that the polymers substituted with CN groups have good structural stability, low-lying FMO energy levels, wide absorption spectra, and smaller effective masses, which are due to their good rigidity and conjugation in comparison with P3HT. Besides, the insertion of CN groups improves the performance of PSC. Synthetically, the designed polymers PFF1 and PFF2 are the champion candidates toward PSC relative to P3HT.

      • KCI등재

        Concurrent classic driver oncogenes mutation with ROS1 rearrangement predicts superior clinical outcome in NSCLC patients

        Li Dandan,Jiang Hua,Jin Faguang,Pan Lei,Xie Yonghong,Zhang Liang,Li Chunmei 한국유전학회 2023 Genes & Genomics Vol.45 No.1

        Background There is high mortality rate and poor prognosis in lung cancer, especially non-small-cell lung cancer (NSCLC). Recent study showed that concurrent classic driver oncogene mutation with ROS1 rearrangement was found in NSCLC patients. However, whether this would affect the development and prognosis of NSCLC is still unclear. Objective To explore the clinical characteristics and prognosis of NSCLC patients harboring concurrent classic driver oncogene mutation with ROS1 rearrangement. Methods A retrospective study was conducted on 220 patients diagnosed with NSCLC. All samples were screened for EGFR and KRAS using amplification-refractory mutation system assay, and for ALK, ROS1 using RT-PCR. The clinical characteristics and clinical outcomes of concurrent gene alterations with ROS1 rearrangement were analyzed. Results In 220 patients, 12 (5.45%) were ROS1 rearrangement, who tend to be younger, non-smokers. The mutation rates of EGFR, KRAS, ALK and ROS1 in NSCLC were 28.64%, 1.82%, 3.64% and 5.45%, respectively. ROS1 rearrangement was identified to co-occur in 5 (2.27%) NSCLC patients. ROS1/EGFR co-alterations were found in 3.17% of NSCLC patients, 16.67% of ROS1-positive NSCLC patients. Concomitant ROS1/ALK rearrangement constituted 37.50% in ALK-positive patients, and 25.00% in ROS1-positive patients. SDC4-ROS1 was the most common fusion partner in concurrent ROS1 rearrangement patients. The median overall survival of NSCLC with concurrent ROS1 rearrangement group and single ROS1 rearrangement group were 25 months and 14 months. Conclusion Concurrent driver oncogenes mutation with ROS1 rearrangement defines a unique subgroup of NSCLC. Patients with concomitant ROS1 rearrangement might have a better prognosis.

      • Involvement of Cdc25c in Cell Cycle Alteration of a Radioresistant Lung Cancer Cell Line Established with Fractionated Ionizing Radiation

        Li, Jie,Yang, Chun-Xu,Mei, Zi-Jie,Chen, Jing,Zhang, Shi-Min,Sun, Shao-Xing,Zhou, Fu-Xiang,Zhou, Yun-Feng,Xie, Cong-Hua Asian Pacific Journal of Cancer Prevention 2013 Asian Pacific journal of cancer prevention Vol.14 No.10

        Cancer patients often suffer from local tumor recurrence after radiation therapy. Cell cycling, an intricate sequence of events which guarantees high genomic fidelity, has been suggested to affect DNA damage responses and eventual radioresistant characteristics of cancer cells. Here, we established a radioresistant lung cancer cell line, A549R, by exposing the parental A549 cells to repeated ${\gamma}$-ray irradiation with a total dose of 60 Gy. The radiosensitivity of A549 and A549R was confirmed using colony formation assays. We then focused on examination of the cell cycle distribution between A549 and A549R and found that the proportion of cells in the radioresistant S phase increased, whereas that in the radiosensitive G1 phase decreased. When A549 and A549R cells were exposed to 4 Gy irradiation the total differences in cell cycle redistribution suggested that G2-M cell cycle arrest plays a predominant role in mediating radioresistance. In order to further explore the possible mechanisms behind the cell cycle related radioresistance, we examined the expression of Cdc25 proteins which orchestrate cell cycle transitions. The results showed that expression of Cdc25c increased accompanied by the decrease of Cdc25a and we proposed that the quantity of Cdc25c, rather than activated Cdc25c or Cdc25a, determines the radioresistance of cells.

      • KCI등재

        Associations of Plasma Glucagon Levels with Estimated Glomerular Filtration Rate, Albuminuria and Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus

        Hua-Xing Huang,Liang-Lan Shen,Hai-Yan Huang,Li-Hua Zhao,Feng Xu,Dong-Mei Zhang,Xiu-Lin Zhang,Tong Chen,Xue-Qin Wang,Yan Xie,Jian-Bin Su 대한당뇨병학회 2021 Diabetes and Metabolism Journal Vol.45 No.6

        Background: Type 2 diabetes mellitus (T2DM) is characterized by elevated fasting glucagon and impaired suppression of postprandial glucagon secretion, which may participate in diabetic complications. Therefore, we investigated the associations of plasma glucagon with estimated glomerular filtration rate (eGFR), albuminuria and diabetic kidney disease (DKD) in T2DM patients.Methods: Fasting glucagon and postchallenge glucagon (assessed by area under the glucagon curve [AUCgla]) levels were determined during oral glucose tolerance tests. Patients with an eGFR <60 mL/min/1.73 m2 and/or a urinary albumin-to-creatinine ratio (UACR) ≥30 mg/g who presented with diabetic retinopathy were identified as having DKD.Results: Of the 2,436 recruited patients, fasting glucagon was correlated with eGFR and UACR (r=–0.112 and r=0.157, respectively; P<0.001), and AUCgla was also correlated with eGFR and UACR (r=–0.267 and r=0.234, respectively; P<0.001). Moreover, 31.7% (n=771) presented with DKD; the prevalence of DKD was 27.3%, 27.6%, 32.5%, and 39.2% in the first (Q1), second (Q2), third (Q3), and fourth quartile (Q4) of fasting glucagon, respectively; and the corresponding prevalence for AUCgla was 25.9%, 22.7%, 33.7%, and 44.4%, respectively. Furthermore, after adjusting for other clinical covariates, the adjusted odds ratios (ORs; 95% confidence intervals) for DKD in Q2, Q3, and Q4 versus Q1 of fasting glucagon were 0.946 (0.697 to 1.284), 1.209 (0.895 to 1.634), and 1.521 (1.129 to 2.049), respectively; the corresponding ORs of AUCgla were 0.825 (0.611 to 1.114), 1.323 (0.989 to 1.769), and 2.066 (1.546 to 2.760), respectively. Additionally, when we restricted our analysis in patients with glycosylated hemoglobin <7.0% (n=471), we found fasting glucagon and AUCgla were still independently associated with DKD.Conclusion: Both increased fasting and postchallenge glucagon levels were independently associated with DKD in T2DM patients.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼