RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Controllable Synthesis of Co-Doped Spinel LiMn2O4 Nanotubes as Cathodes for Li-Ion Batteries

        Li-Xin Zhang,Yuan-Zhong Wang,Hong-Fang Jiu,Ya-Lei Wang,Yi-Xin Sun,Zhenzhong Li 대한금속·재료학회 2014 ELECTRONIC MATERIALS LETTERS Vol.10 No.2

        Spinel Co-LiMn2O4 nanotubes have been synthesized via solid state reaction using α-MnO2 nanotubes as selftemplates. The as-prepared powders were investigated by XRD, TEM, and galvanostatic discharge/charge analysis. The optimal doping amount was confirmed by galvanostatic charge/discharge measurements. The results indicate that about 67% of initial capacity (115 mAh/g) of LiMn2O4 nanotubes can be retained after 50 cycles. For Co-LiMn2O4 nanotubes, the initial reversible capacity is 126.6 mAh/g and 100 mAh/g can be maintained after 50 cycles. The capacitance retention rate of Co-LiMn2O4 nanotubes is as high as 79%. These results indicate that the doping Co can effectively improve circle stability and electrochemical performance of LiMn2O4 nanotubes.

      • KCI등재

        Identification and characterization of heat shock proteins in a parasitic wasp Chouioia cuneae (Hymenoptera: Eulophidae)

        Li‐Na Pan,Feng-ZhuWANG,Xin-Yue ZHANG,Yan-Ni ZHAO,Geng-Ping ZHU,Min LI 한국곤충학회 2018 Entomological Research Vol.48 No.3

        Heat shock proteins (HSPs) are known to be induced in response to various stress factors. Although HSPs have been studied in a number of insects, not much is known about HSPs in the natural enemies of insects, especially parasitoids. In this study, we identified and characterized five full‐length HSP genes (Cchsp40, Cchsp60, Cchsp70, Cchsp83, and Cchsp90) from an endoparasitic chalcid wasp, Chouioia cunea, which parasitizes the fall webworm, Hyphantria cunea pupae, a worldwide pest. The expression of Cchsps in response to temperature, pesticide stresses and UV radiation were also investigated by quantitative real‐time polymerase chain reaction (RT‐qPCR). The results showed that all five Cchsps were induced in response to hot and cold temperatures. Four pesticides induced the abundant expression of Cchsp70, Cchsp83 and Cchsp90 while ultraviolet radiation up‐regulated Cchsp40, Cchsp70, Cchsp83 and Cchsp90. These results indicate the different transcriptional profiles of the five different Cchsps in response to various abiotic stresses. The findings of this study provide insights into the response of C. cunea to abiotic stresses and insight into the use of this parasitoid in biological control strategies.

      • 遼西冶銅考古的壹項新收獲 -內蒙古克什克騰旗喜鵲溝銅광遺址的發掘-

        왕입신 ( Li Xin Wang ) 단국사학회 2014 史學志 Vol.48 No.-

        2011년 필자는 내몽골 극십극등기(克什克藤旗) 희작구(喜鵲溝) 광산 유적을 발굴조사하였다. 유적에서 출토된 토기의 형식특징 및 탄소연대측정 결과 그 연대는 상(商) 말기에 속하며 하한은 서주(西周) 초(기원전 12-11세기 전후)로 측정되어 지금까지 중국 장강(長江)이북에서 발견된 가장 이른 시기의 채광 유적에 해당된다. 희작구유적의 발굴은 요서지역 청동제련 기술의 기원을 비롯하여 동광유적의 초창기 취락 특징 및 생산방식을 이해할 수 있는 자료를 제공하였다. 아울러 청동광산의 수요에 대한 당시 사회와의 상호작용 문제 등 다양한 학술연구방면의 과제로 주목받고 있다. In June 2011, Research Center for Chinese Frontier Archaeology of Jilin Uninversity and Inner momgolian institute og cultural relics and archaeoloy organized a survey and excavation project at shafts, two stone walls and one stone-built architecture were discovered. Two house and one mining pit have been excavated. The unearthed artifacts mainly consist of high neck and round belly pottery li-cauldrons, most of them having a decor of attached bands parallel to the rim.

      • KCI우수등재

        Recent Development in the Rate Performance of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>

        Lin, Chunfu,Xin, Yuelong,Cheng, Fuquan,Lai, Man On,Zhou, Henghui,Lu, Li The Korean Vacuum Society 2014 Applied Science and Convergence Technology Vol.23 No.2

        Lithium-ion batteries (LIBs) have become popular electrochemical devices. Due to the unique advantages of LIBs in terms of high operating voltage, high energy density, low self-discharge, and absence of memory effects, their application range, which was primarily restricted to portable electronic devices, is now being extended to high-power applications, such as electric vehicles (EVs) and hybrid electrical vehicles (HEVs). Among various anode materials, $Li_4Ti_5O_{12}$ (LTO) is believed to be a promising anode material for high-power LIBs due to its advantages of high working potential and outstanding cyclic stability. However, the rate performance of LTO is limited by its intrinsically low electronic conductivity and poor $Li^+$ ion diffusion coefficient. This review highlights the recent progress in improving the rate performance of LTO through doping, compositing, and nanostructuring strategies.

      • KCI등재

        Recent Development in the Rate Performance of Li4Ti5O12

        Chunfu Lin,Li Lu,Yuelong Xin,Fuquan Cheng,Man On Lai,Henghui Zhou 한국진공학회 2014 Applied Science and Convergence Technology Vol.23 No.2

        Lithium-ion batteries (LIBs) have become popular electrochemical devices. Due to the unique advantages of LIBs in terms of high operating voltage, high energy density, low self-discharge, and absence of memory effects, their application range, which was primarily restricted to portable electronic devices, is now being extended to high-power applications, such as electric vehicles (EVs) and hybrid electrical vehicles (HEVs). Among various anode materials, Li4Ti5O12 (LTO) is believed to be a promising anode material for high-power LIBs due to its advantages of high working potential and outstanding cyclic stability. However, the rate performance of LTO is limited by its intrinsically low electronic conductivity and poor Li+ ion diffusion coefficient. This review highlights the recent progress in improving the rate performance of LTO through doping, compositing, and nanostructuring strategies.

      • KCI우수등재

        Recent Development in the Rate Performance of Li4Ti<SUB>5</SUB>O<SUB>12</SUB>

        Chunfu Lin,Yuelong Xin,Fuquan Cheng,Man On Lai,Henghui Zhou,Li Lu 한국진공학회(ASCT) 2014 Applied Science and Convergence Technology Vol.23 No.2

        Lithium-ion batteries (LIBs) have become popular electrochemical devices. Due to the unique advantages of LIBs in terms of high operating voltage, high energy density, low self-discharge, and absence of memory effects, their application range, which was primarily restricted to portable electronic devices, is now being extended to high-power applications, such as electric vehicles (EVs) and hybrid electrical vehicles (HEVs). Among various anode materials, Li4Ti5O12 (LTO) is believed to be a promising anode material for high-power LIBs due to its advantages of high working potential and outstanding cyclic stability. However, the rate performance of LTO is limited by its intrinsically low electronic conductivity and poor Li<SUP>+</SUP> ion diffusion coefficient. This review highlights the recent progress in improving the rate performance of LTO through doping, compositing, and nanostructuring strategies.

      • KCI등재

        Effect of carbon black on properties of 0–3 piezoelectric ceramic/cement composites

        Huang Shifeng,Li Xue,Liu Futian,Chang Jun,Xu Dongyu,Cheng Xin 한국물리학회 2009 Current Applied Physics Vol.9 No.6

        0–3 cement-based piezoelectric composites were fabricated using sulphoaluminate cement and piezoelectric ceramic [0.08Pb(Li1/4Nb3/4)O3 . 0.47PbTiO3 . 0.45PbZrO3] [P(LN)ZT] as raw materials by compressing technique. The influences of carbon black content on the piezoelectric and dielectric properties, electric conductivity and impedance were investigated. The results indicate that the piezoelectric strain constant d33 and piezoelectric voltage constant g33 of the composites increase gradually with a suitable carbon black addition. When the carbon black content is 0.3 wt%, both of the piezoelectric strain constant d33 and piezoelectric voltage constant g33 of the composite exist the maximum value, which are 17.45 pC N-1 and 36.3 mV m N-1, respectively. As the carbon black content increases, the dielectric constant εr, dielectric loss tanδ and electric conductivity σ of the composites all increase, while the impedance decreases. In the frequency range tested, the more the carbon black content, the higher the εr value. The planar electromechanical coupling coefficient Kp, the thickness electromechanical coupling coefficient Kt and the mechanical quality factor Qm are almost unaffected by the carbon black content.

      • KCI등재후보

        An Improved Multilevel Fuzzy Comprehensive Evaluation to Analyse on Engineering Project Risk

        Xin LI(Xin LI),Mufeng LI(Mufeng LI),Xia HAN(Xia HAN) 국제융합경영학회 2022 융합경영연구 Vol.10 No.5

        Purpose: To overcome the question that depends too much on expert's subjective judgment in traditional risk identification, this paper structure the multilevel generalized fuzzy comprehensive evaluation mathematics model of the risk identification of project, to research the risk identification of the project. Research design, data and methodology: This paper constructs the multilevel generalized fuzzy comprehensive evaluation mathematics model. Through iterative algorithm of AHP analysis, make sure the important degree of the sub project in risk analysis, then combine expert's subjective judgment with objective quantitative analysis, and distinguish the risk through identification models. Meanwhile, the concrete method of multilevel generalized fuzzy comprehensive evaluation is probed. Using the index weights to analyse project risks is discussed in detail. Results: The improved fuzzy comprehensive evaluation algorithm is proposed in the paper, at first the method of fuzzy sets core is used to optimize the fuzzy relation matrix. It improves the capability of the algorithm. Then, the method of entropy weight is used to establish weight vectors. This makes the computation process fair and open. And thereby, the uncertainty of the evaluation result brought by the subjectivity can be avoided effectively and the evaluation result becomes more objective and more reasonable. Conclusions: In this paper, we use an improved fuzzy comprehensive evaluation method to evaluate a railroad engineering project risk. It can give a more reliable result for a reference of decision making.

      • KCI등재

        The Synergism of Human Lactobacillaceae and Inulin Decrease Hyperglycemia via Regulating the Composition of Gut Microbiota and Metabolic Profiles in db/db Mice

        Li Peifan,Tong Tong,Wu Yusong,Zhou Xin,Zhang Michael,Liu Jia,She Yongxin,Li Zuming,Li Yongli 한국미생물·생명공학회 2023 Journal of microbiology and biotechnology Vol.33 No.12

        This study aimed to evaluate the effects of Limosilactobacillus fermentum and Lactiplantibacillus plantarum isolated from human feces coordinating with inulin on the composition of gut microbiota and metabolic profiles in db/db mice. These supplements were administered to db/db mice for 12 weeks. The results showed that the Lactobacillaceae coordinating with inulin group (LI) exhibited lower fasting blood glucose levels than the model control group (MC). Additionally, LI was found to enhance colon tissue and increase the levels of short-chain fatty acids. 16S rRNA sequencing revealed that the abundance of Corynebacterium and Proteus, which were significantly increased in the MC group compared with NC group, were significantly decreased by the treatment of LI that also restored the key genera of the Lachnospiraceae_NK4A136_group, Lachnoclostridium, Ruminococcus_ gnavus_group, Desulfovibrio, and Lachnospiraceae_UCG-006. Untargeted metabolomics analysis showed that lotaustralin, 5-hydroxyindoleacetic acid, and 13(S)-HpODE were increased while L-phenylalanine and L-tryptophan were decreased in the MC group compared with the NC group. However, the intervention of LI reversed the levels of these metabolites in the intestine. Correlation analysis revealed that Lachnoclostridium and Ruminococcus_gnavus_group were negatively correlated with 5-hydroxyindoleacetic acid and 13(S)-HpODE, but positively correlated with L-tryptophan. 13(S)-HpODE was involved in the "linoleic acid metabolism". L-tryptophan and 5-hydroxyindoleacetic acid were involved in "tryptophan metabolism" and "serotonergic synapse". These findings suggest that LI may alleviate type 2 diabetes symptoms by modulating the abundance of Ruminococcus_gnavus_group and Lachnoclostridium to regulate the pathways of "linoleic acid metabolism", "serotonergic synapse", and" tryptophan metabolism". Our results provide new insights into prevention and treatment of type 2 diabetes.

      • KCI등재

        A novel inverse opal zirconia pigment with controllable color saturation

        Li-li Wang,Xin-xin Liu,Xiao-peng Li,Xiu-feng Wang,Li-na Feng,Xu-ri Hou 한양대학교 세라믹연구소 2021 Journal of Ceramic Processing Research Vol.22 No.2

        The inverse opal zirconia pigments were prepared by template method using polystyrene microspheres with the size of 340 ± 10nm as raw material and the in situ carbon was formed to achieve controllable and adjustable color saturation by sintering atvarious temperatures in nitrogen atmosphere with various nitrogen flow rates. The effects of nitrogen atmosphere, nitrogenflow rate and sintering temperature on the morphology, phase and color saturation of the inverse opal zirconia wereinvestigated. The results showed that when the inverse opal zirconia was sintered at 450 oC to 600 oC in nitrogen atmosphere,the green color saturation could be adjusted by changing the nitrogen flow rate from 0.2 L/min to 0.8 L/min. When thenitrogen rate was 0.8L/min, the green color saturation of the inverse opal zirconia could be adjusted by changing the sinteringtemperature from 450 oC to 600 oC. It indicated that the more the amount of in-situ carbon was generated, the more stray lightwas absorbed and the higher green color saturation of the inverse opal zirconia could be obtained. Further increasing thesintering temperature to 700 oC would destroy the inverse opal morphology of zirconia and affect the carbonization of theorganic component.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼