RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Monitoring in-service performance of fibre-reinforced foamed urethane sleepers/bearers in railway urban turnout systems

        Kaewunruen, Sakdirat Techno-Press 2014 Structural monitoring and maintenance Vol.1 No.1

        Special track systems used to divert a train to other directions or other tracks are generally called 'railway turnout'. A traditional turnout system consists of steel rails, switches, crossings, steel plates, fasteners, screw spikes, timber bearers, ballast and formation. The wheel rail contact over the crossing transfer zone has a dip-like shape and can often cause detrimental impact loads on the railway track and its components. The large impact also emits disturbing noises (either impact or ground-borne noise) to railway neighbors. In a brown-field railway track where an existing aged infrastructure requires renewal or maintenance, some physical constraints and construction complexities may dominate the choice of track forms or certain components. With the difficulty to seek for high-quality timbers with dimensional stability, a methodology to replace aged timber bearers in harsh dynamic environments is to adopt an alternative material that could mimic responses and characteristics of timber in both static and dynamic loading conditions. A critical review has suggested an application of an alternative material called fibre-reinforced foamed urethane (FFU). The full-scale capacity design makes use of its comparable engineering characteristics to timber, high-impact attenuation, high damping property, and a longer service life. A field trial to investigate in-situ behaviours of a turnout grillage system using an alternative material, 'fibre-reinforced foamed urethane (FFU)' bearers, has been carried out at a complex turnout junction under heavy mixed traffics at Hornsby, New South Wales, Australia. The turnout junction was renewed using the FFU bearers altogether with new special track components. Influences of the FFU bearers on track geometry (recorded by track inspection vehicle 'AK Car'), track settlement (based on survey data), track dynamics, and acoustic characteristics have been measured. Operational train pass-by measurements have been analysed to evaluate the effectiveness of the replacement methodology. Comparative studies show that the use of FFU bearers generates higher rail and sleeper accelerations but the damping capacity of the FFU help suppress vibration transferring onto other track components. The survey data analysis suggests a small vertical settlement and negligible lateral movement of the turnout system. The static and dynamic behaviours of FFU bearers appear to equate that of natural timber but its service life is superior.

      • KCI등재

        Damped frequencies of precast modular steel-concrete composite railway track slabs

        Sakdirat Kaewunruen,Stephen Kimindiri Kimani 국제구조공학회 2017 Steel and Composite Structures, An International J Vol.25 No.4

        This paper presents unprecedented damped oscillation behaviours of a precast steel-concrete composite slab panel for track support. The steel-concrete composite slab track is an innovative slab track, a form of ballastless track which is becoming increasingly attractive to asset owners as they seek to reduce lifecycle costs and deal with increasing rail traffic speeds. The slender nature of the slab panel due to its reduced depth of construction makes it susceptible to vibration problems. The aim of the study is driven by the need to address the limited research available to date on the dynamic behaviour of steel-concrete composite slab panels for track support. Free vibration analysis of the track slab has been carried out using ABAQUS. Both undamped and damped eigenfrequencies and eigenmodes have been extracted using the Lancsoz method. The fundamental natural frequencies of the slab panel have been identified together with corresponding mode shapes. To investigate the sensitivity of the natural frequencies and mode shapes, parametric studies have been established, considering concrete strength and mass and steel\'s modulus of elasticity. This study is the world first to observe crossover phenomena that result in the inversion of the natural orders without interaction. It also reveals that replacement of the steel with aluminium or carbon fibre sheeting can only marginally reduce the natural frequencies of the slab panel.

      • KCI등재

        Design and modelling of pre-cast steel-concrete composites for resilient railway track slabs

        Sakdirat Kaewunruen,Olivia Mirza,Kenny Kwok,Dane W.P. Griffin 국제구조공학회 2016 Steel and Composite Structures, An International J Vol.22 No.3

        Australian railway networks possess a large amount of aging timber components and need to replace them in excess of 280 thousands m<sup>3</sup> per year. The relatively high turnover of timber sleepers (crossties in a plain track), bearers (skeleton ties in a turnout), and transoms (bridge cross beams) is responsible for producing greenhouse gas emissions 6 times greater than an equivalent reinforced concrete counterparts. This paper presents an innovative solution for the replacement of aging timber transoms installed on existing railway bridges along with the incorporation of a continuous walkway platform, which is proven to provide environmental, safety and financial benefits. Recent developments for alternative composite materials to replace timber components in railway infrastructure construction and maintenance demonstrate some compatibility issues with track stiffness as well as structural and geometrical track systems. Structural concrete are generally used for new railway bridges where the comparatively thicker and heavier fixed slab track systems can be accommodated. This study firstly demonstrates a novel and resilient alterative by incorporating steel-concrete composite slab theory and combines the capabilities of being precast and modulated, in order to reduce the depth, weight and required installation time relative to conventional concrete direct-fixation track slab systems. Clear benefits of the new steel-concrete composites are the maintainability and constructability, especially for existing railway bridges (or brown fields). Critical considerations in the design and finite element modelling for performance benchmarking of composite structures and their failure modes are highlighted in this paper, altogether with risks, compatibilities and compliances.

      • Machine learning aided rail corrugation monitoring for railway track maintenance

        Kaewunruen, Sakdirat,Sresakoolchai, Jessada,Zhu, Gaoman Techno-Press 2021 Structural monitoring and maintenance Vol.8 No.2

        Urban rail transit is a critical infrastructure system that supports urban economic and social development. It has a significant mass transportation capacity while enables environmental benefits. Public transport is a way to resolve large-scale urban road traffic problems and contributes towards sustainable development. However, with the operations of railway vehicles on curves, unbalanced and undulated wears often appear on rails, especially on the low rail. This rail surface defect, so-called 'rail corrugation', directly affects the service life of rolling stocks and track components. The high-frequency vibrations caused by train-track interaction over rail corrugations also impair passenger ride comfort and generate excessive noises. In severe cases, the defects may even endanger the safe passage of a railway vehicle. In practice, rail corrugation has brought huge challenges to the reliable operations and maintenance of railway networks. With the continuous expansion of railway lines and the increasing traffic demands, any existing rail corrugation test method is not enough to meet the actual needs of track maintainers to promptly identify and mitigate rail surface defects. Therefore, this investigation aims to establish a new technique to prognose and classify rail corrugations efficiently and effectively. This study adopts D-track dynamic simulation package to obtain over thousands of vibration data in the form of axle box accelerations from train-track interactions under different conditions. Neural network models have been developed to recognize the rail corrugations and then classify their severity to aid the planning and prioritization of rail track maintenance activities. The models have been trained and tested using the vibration data, achieving the accuracy of over 90%. The optimal model has then been highlighted. The investigation has demonstrated the potential of the neural network to detect and classify rail corrugations, which can be used practically for curved track condition monitoring and maintenance planning.

      • A review on modelling and monitoring of railway ballast

        Ngamkhanong, Chayut,Kaewunruen, Sakdirat,Baniotopoulos, Charalampos Techno-Press 2017 Structural monitoring and maintenance Vol.4 No.3

        Nowadays, railway system plays a significant role in transportation, conveying cargo, passengers, minerals, grains, and so forth. Railway ballasted track is a conventional railway track as can be seen all over the world. Ballast, located underneath the sleepers, is the most important elements on ballasted track, which has many functions and requires routine maintenance. Ballast needs to be maintained frequently to prevent rail buckling, settlement, misalignment so that ballast has to be modelled accurately. Continuum model was introduced to model granular material and was extended in ballast. However, ballast is a heterogeneous material with highly nonlinear behaviour. Hence, ballast could not be modelled accurately in continuum model due to the discontinuities nature and material degradation of ballast. Discrete element modelling (DEM) is proposed as an alternative approach that provides insight into constitutive model, realistic particle, and contact algorithm between each particle. DEM has been studied in many recent decades. However, there are limitations due to the high computational time and memory consumption, which cause the lack of using in high range. This paper presents a review of recent ballast modelling with benefits and drawbacks. Ballast particles are illustrated either circular, circular crump, spherical, spherical crump, super-quadric, polygonal and polyhedral. Moreover, the gaps and limitations of previous studies are also summarized. The outcome of this study will help the understanding into different ballast modelling and particle. The insight information can be used to improve ballast modelling and monitoring for condition-based track maintenance.

      • SCIESCOPUS

        Large deflection analysis of orthotropic, elliptic membranes

        Chucheepsakul, Somchai,Kaewunruen, Sakdirat,Suwanarat, Apiwat Techno-Press 2009 Structural Engineering and Mechanics, An Int'l Jou Vol.31 No.6

        Applications of membrane mechanisms are widely found in nano-devices and nano-sensor technologies nowadays. An alternative approach for large deflection analysis of the orthotropic, elliptic membranes - subject to gravitational, uniform pressures often found in nano-sensors - is described in this paper. The material properties of membranes are assumed to be orthogonally isotropic and linearly elastic, while the principal directions of elasticity are parallel to the coordinate axes. Formulating the potential energy functional of the orthotropic, elliptic membranes involves the strain energy that is attributed to inplane stress resultant and the potential energy due to applied pressures. In the solution method, Rayleigh-Ritz method can be used successfully to minimize the resulting total potential energy generated. The set of equilibrium equations was solved subsequently by Newton-Raphson. The unparalleled model formulation capable of analyzing the large deflections of both circular and elliptic membranes is verified by making numerical comparisons with existing results of circular membranes as well as finite element solutions. The results are found in excellent agreements at all cases. Then, the parametric investigations are given to delineate the impacts of the aspect ratios and orthotropic elasticity on large static tensions and deformations of the orthotropic, elliptic membranes.

      • KCI등재

        Large deflection analysis of orthotropic, elliptic membranes

        Somchai Chucheepsakul,Sakdirat Kaewunruen,Apiwat Suwanarat 국제구조공학회 2009 Structural Engineering and Mechanics, An Int'l Jou Vol.32 No.1

        Applications of membrane mechanisms are widely found in nano-devices and nano-sensor technologies nowadays. An alternative approach for large deflection analysis of the orthotropic, elliptic membranes . subject to gravitational, uniform pressures often found in nano-sensors . is described in this paper. The material properties of membranes are assumed to be orthogonally isotropic and linearly elastic, while the principal directions of elasticity are parallel to the coordinate axes. Formulating the potential energy functional of the orthotropic, elliptic membranes involves the strain energy that is attributed to inplane stress resultant and the potential energy due to applied pressures. In the solution method, Rayleigh-Ritz method can be used successfully to minimize the resulting total potential energy generated. The set of equilibrium equations was solved subsequently by Newton-Raphson. The unparalleled model formulation capable of analyzing the large deflections of both circular and elliptic membranes is verified by making numerical comparisons with existing results of circular membranes as well as finite element solutions. The results are found in excellent agreements at all cases. Then, the parametric investigations are given to delineate the impacts of the aspect ratios and orthotropic elasticity on large static tensions and deformations of the orthotropic, elliptic membranes.

      • KCI등재

        Large deflection analysis of orthotropic, elliptic membranes

        Somchai Chucheepsakul,Sakdirat Kaewunruen,Apiwat Suwanarat 국제구조공학회 2009 Structural Engineering and Mechanics, An Int'l Jou Vol.31 No.6

        Applications of membrane mechanisms are widely found in nano-devices and nano-sensor technologies nowadays. An alternative approach for large deflection analysis of the orthotropic, elliptic membranes – subject to gravitational, uniform pressures often found in nano-sensors – is described in this paper. The material properties of membranes are assumed to be orthogonally isotropic and linearly elastic, while the principal directions of elasticity are parallel to the coordinate axes. Formulating the potential energy functional of the orthotropic, elliptic membranes involves the strain energy that is attributed to inplane stress resultant and the potential energy due to applied pressures. In the solution method, Rayleigh-Ritz method can be used successfully to minimize the resulting total potential energy generated. The set of equilibrium equations was solved subsequently by Newton-Raphson. The unparalleled model formulation capable of analyzing the large deflections of both circular and elliptic membranes is verified by making numerical comparisons with existing results of circular membranes as well as finite element solutions. The results are found in excellent agreements at all cases. Then, the parametric investigations are given to delineate the impacts of the aspect ratios and orthotropic elasticity on large static tensions and deformations of the orthotropic, elliptic membranes.

      • KCI등재

        Seismic vulnerbility analysis of Bankstown’s West Terrace railway bridge

        Olivia Mirza,Sakdirat Kaewunruen,Darren Galia 국제구조공학회 2016 Structural Engineering and Mechanics, An Int'l Jou Vol.57 No.3

        This paper highlights a case study that investigates the behaviour of existing bridge, West Terrace Bridge, induced by horizontal seismic loading. Unfortunately the lack of past information related to seismic activity within the NSW region has made it difficult to understand better the capacity of the structure if Earthquake occurs. The research was conducted through the University of Western Sydney in conjunction with Railcorp Australia, as part of disaster reduction preparedness program. The focus of seismic analyses was on the assessment of stress behaviour, induced by cyclic horizontal/vertical displacements, within the concrete slab and steel truss of the bridge under various Earthquake Year Return Intervals (YRI) of 1-100, 1- 200, 1-250, 1-500, 1-800, 1-1000, 1-1500, 1-2000 and 1-2500. Furthermore the stresses and displacements were rigorously analysed through a parametric study conducted using different boundary conditions. The numerical analysis of the concrete slab and steel truss were performed through the finite element software, ABAQUS. The field measurements and observation had been used to validate the results drawn from the finite element simulation. It was illustrated that under a YRI of 1/1000 the bottom chord of the steel truss failed as the stress induced surpassed the ultimate stress capacity and the horizontal displacement exceeded the allowable displacement measured in the field observations whereas the vertical displacement remained within the previously observed limitations. Furthermore the parametric studies in this paper demonstrate that a change in boundary conditions alleviated the stress distribution throughout the structure allowing it to withstand a greater load induced by the earthquake YRI but ultimately failed when the maximum earthquake loading was applied. Therefore it was recommended to provide a gap of 50mm on the end of the concrete slab to allow the structure to displace without increasing the stress in the structure. Finally, this study has proposed a design chart to showcase the failure mode of the bridge when subjected to seismic loading.

      • KCI등재

        Influence of shear bolt connections on modular precast steel-concrete composites for track support structures

        Olivia Mirza,Sakdirat Kaewunruen 국제구조공학회 2018 Steel and Composite Structures, An International J Vol.27 No.5

        Through extensive research, there exist a new type of connection between railway bridge girders and steel-concrete composite panels. In addition to conventional shear connectors, newly developed blind bolts have been recently adopted for retrofitting. However, the body of knowledge on their influence and application to railway structures has not been thoroughly investigated. This study has thus placed a particular emphasis on the application of blind bolts on the Sydney Harbour Bridge as a feasible alternative constituent of railway track upgrading. Finite element modeling has been used to simulate the behaviours of the precast steel-concrete panels with common types of bolt connection using commercially available package, ABAQUS. The steel-concrete composite track slabs have been designed in accordance with Australian Standards AS5100. These precast steel-concrete panels are then numerically retrofitted by three types of most practical bold connections: head studded shear connector, Ajax blind bolt and Lindapter hollow bolt. The influences of bolt connections on load and stress transfers and structural behaviour of the composite track slabs are highlighted in this paper. The numerical results exhibit that all three bolts can distribute stresses effectively and can be installed on the bridge girder. However, it is also found that Lindapter hollow bolts are superior in minimising structural responses of the composite track slabs to train loading.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼