RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Complete genome sequence of Sphingobium sp. strain PAMC 28499 reveals a potential for degrading pectin with comparative genomics approach

        So‑Ra Han,Sung‑Min Jang,Young Min Chi,Byeollee Kim,정상희,Yung Mi Lee,Jun Uetake,Jun Hyuck Lee,Hyun Park,오태진 한국유전학회 2020 Genes & Genomics Vol.42 No.9

        Background Spingobium sp. PAMC 28499 is isolated from the glaciers of Uganda. Uganda is a unique region where hot areas and glaciers coexist, with a variety of living creatures surviving, but the survey on them is very poor. The genetic character and complete genome information of Sphingobium strains help with environmental studies and the development of better to enzyme industry. Objective In this study, complete genome sequence of Spingobium sp. PAMC 28499 and comparative analysis of Spingobium species strains isolated from variety of the region. Methods Genome sequencingwas performed using PacBio sequel single-molecule real-time (SMRT) sequencing technology. The predicted gene sequences were functionally annotated and gene prediction was carried out using the program NCBI nonredundant database. And using dbCAN2 and KEGG data base were degradation pathway predicted and protein prediction about carbohydrate active enzymes (CAZymes). Results The genome sequence has 64.5% GC content, 4432 coding protein coding genes, 61 tRNAs, and 12 rRNA operons. Its genome encodes a simple set of metabolic pathways relevant to pectin and its predicted degradation protein an unusual distribution of CAZymes with extracellular esterases and pectate lyases. CAZyme annotation analyses revealed 165 genes related to carbohydrate active, and especially we have found GH1, GH2, GH3, GH38, GH35, GH51, GH51, GH53, GH106, GH146, CE12, PL1 and PL11 such as known pectin degradation genes from Sphingobium yanoikuiae. These results confrmed that this Sphingobium sp. strain PAMC 28499 have similar patterns to RG I pectin-degrading pathway. Conclusion In this study, isolated and sequenced the complete genome of Spingobium sp. PAMC 28499. Also, this strain has comparative genome analysis. Through the complete genome we can predict how this strain can store and produce energy in extreme environment. It can also provide bioengineered data by fnding new genes that degradation the pectin

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼