RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Colonic Dysmotility in Murine Partial Colonic Obstruction Due to Functional Changes in Interstitial Cells

        Qianqian Wang,Jingyu Zang,Xu Huang,Hongli Lu,Wenxie Xu,Jie Chen 대한소화기 기능성질환∙운동학회 2019 Journal of Neurogastroenterology and Motility (JNM Vol.25 No.4

        Background/Aims Interstitial cells play important roles in gastrointestinal (GI) neuro-smooth muscle transmission. The underlying mechanisms of colonic dysmotility have not been well illustrated. We established a partial colon obstruction (PCO) mouse model to investigate the changes of interstitial cells and the correlation with colonic motility. Methods Western blot technique was employed to observe the protein expressions of Kit, platelet-derived growth factor receptor-α (Pdgfra), Ca2+-activated Cl− (Ano1) channels, and small conductance Ca2+- activated K+ (SK) channels. Colonic migrating motor complexes (CMMCs) and isometric force measurements were employed in control mice and PCO mice. Results PCO mice showed distended abdomen and feces excretion was significantly reduced. Anatomically, the colon above the obstructive silicone ring was obviously dilated. Kit and Ano1 proteins in the colonic smooth muscle layer of the PCO colons were significantly decreased, while the expression of Pdgfra and SK3 proteins were significantly increased. The effects of a nitric oxide synthase inhibitor (L-NAME) and an Ano1 channel inhibitor (NPPB) on CMMC and colonic spontaneous contractions were decreased in the proximal and distal colons of PCO mice. The SK agonist, CyPPA and antagonist, apamin in PCO mice showed more effect to the CMMCs and colonic smooth muscle contractions. Conclusions Colonic transit disorder may be due to the downregulation of the Kit and Ano1 channels and the upregulation of SK3 channels in platelet-derived growth factor receptor-α positive (PDGFRα+) cells. The imbalance between interstitial cells of Cajal-Ano1 and PDGFRα-SK3 distribution might be a potential reason for the colonic dysmotility. Background/Aims Interstitial cells play important roles in gastrointestinal (GI) neuro-smooth muscle transmission. The underlying mechanisms of colonic dysmotility have not been well illustrated. We established a partial colon obstruction (PCO) mouse model to investigate the changes of interstitial cells and the correlation with colonic motility. Methods Western blot technique was employed to observe the protein expressions of Kit, platelet-derived growth factor receptor-α (Pdgfra), Ca2+-activated Cl− (Ano1) channels, and small conductance Ca2+- activated K+ (SK) channels. Colonic migrating motor complexes (CMMCs) and isometric force measurements were employed in control mice and PCO mice. Results PCO mice showed distended abdomen and feces excretion was significantly reduced. Anatomically, the colon above the obstructive silicone ring was obviously dilated. Kit and Ano1 proteins in the colonic smooth muscle layer of the PCO colons were significantly decreased, while the expression of Pdgfra and SK3 proteins were significantly increased. The effects of a nitric oxide synthase inhibitor (L-NAME) and an Ano1 channel inhibitor (NPPB) on CMMC and colonic spontaneous contractions were decreased in the proximal and distal colons of PCO mice. The SK agonist, CyPPA and antagonist, apamin in PCO mice showed more effect to the CMMCs and colonic smooth muscle contractions. Conclusions Colonic transit disorder may be due to the downregulation of the Kit and Ano1 channels and the upregulation of SK3 channels in platelet-derived growth factor receptor-α positive (PDGFRα+) cells. The imbalance between interstitial cells of Cajal-Ano1 and PDGFRα-SK3 distribution might be a potential reason for the colonic dysmotility.

      • KCI등재

        Risk factors affecting postoperative pulmonary function in congenital diaphragmatic hernia

        Qianqian Wang,Quanhua Liu,Jingyu Zang,Jun Wang,Jie Chen 대한외과학회 2020 Annals of Surgical Treatment and Research(ASRT) Vol.98 No.4

        Purpose: It is well known that congenital diaphragmatic hernia (CDH) in infants impacts pulmonary function rehabilitation after surgery. However, the risk factors of postoperative pulmonary function are still unclear. In this research, we analyzed the potential risk factors of postoperative pulmonary function in CDH patients in order to improve the clinical management of CDH patients. Methods: Thirty-three cases CDH infants followed were enrolled from November 2016 to September 2018. Clinical data were reviewed. Tidal breathing pulmonary function testing was performed after surgery. Correlation between pulmonary function and clinical characteristics was evaluated using multivariate analysis of variance. Results: Pulmonary dysfunction was detected in 87.9% patients (29 of 33). The defect size was found to be significantly larger in patients with obstructed and mixed ventilatory disorders (P = 0.001). Diagnosis of gestational age (GA) was also significantly earlier compared to restrictive ventilatory disorders (P = 0.001). Larger defect size, and earlier prenatal diagnosis of GA were detected in severe obstructive ventilatory disorders (P = 0.007, P = 0.001, retrospectively). Conclusion: Most patients had various degrees of pulmonary dysfunction after surgery. Patients with larger defect size and earlier diagnosis time might be vulnerable to severe obstructive and mixed ventilatory disorders.

      • KCI등재

        Colonic Transit Disorder Mediated by Downregulation of Interstitial Cells of Cajal/Anoctamin-1 in Dextran Sodium Sulfate-induced Colitis Mice

        Chen Lu,Hongli Lu,Xu Huang,Shaohua Liu,Jingyu Zang,Yujia Li,Jie Chen,Wenxie Xu 대한소화기 기능성질환∙운동학회 2019 Journal of Neurogastroenterology and Motility (JNM Vol.25 No.2

        Background/Aims Interstitial cells of Cajal (ICC) and their special calcium-activated chloride channel, anoctamin-1 (ANO1) play pivotal roles in regulating colonic transit. This study is designed to investigate the role of ICC and the ANO1 channel in colonic transit disorder in dextran sodium sulfate (DSS)-treated colitis mice. Methods Colonic transit experiment, colonic migrating motor complexes (CMMCs), smooth muscle spontaneous contractile experiments, intracellular electrical recordings, western blotting analysis, and quantitative polymerase chain reaction were applied in this study. Results The mRNA and protein expressions of c-KIT and ANO1 channels were significantly decreased in the colons of DSS-colitis mice. The colonic artificial fecal-pellet transit experiment in vitro was significantly delayed in DSS-colitis mice. The CMMCs and smooth muscle spontaneous contractions were significantly decreased by 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), an ANO1 channel blocker, and NG-Nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of nitric oxide synthase activity, in DSS-colitis mice compared with that of control mice. Intracellular electrical recordings showed that the amplitude of NPPB-induced hyperpolarization was more positive in DSS-colitis mice. The electric field stimulation-elicited nitric-dependent slow inhibitory junctional potentials were also more positive in DSS-colitis mice than those of control mice. Conclusion The results suggest that colonic transit disorder is mediated via downregulation of the nitric oxide/ICC/ANO1 signalling pathway in DSS-colitis mice.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼