RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Incorporating CsPbBr3 Nanocrystals into Porous AlO(OH) Matrices to Improve their Stability in Backlit Displays

        Jiangcong Zhou,Yiqing Lai,Na Lin,Xiaotian Huang,Yu Chen,Yao Yao,Bo Wang 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2019 NANO Vol.15 No.01

        Currently, the poor stability of inorganic perovskite CsPbX3 (X = Cl, Br, I) nanocrystals restricts their practical application in optoelectronic devices. Therefore, improving the stability of this material remains an urgent task for most researchers. In this study, incorporation of CsPbBr3 nanocrystals into porous AlO(OH) matrices through simple in situ synthesis was demonstrated to be an efficient approach for improving the nanocrystal stability. X-ray diffraction (XRD) revealed that the as-obtained product was composed of cubic CsPbBr3 nanocrystals and orthorhombic AlO(OH) compounds. In addition, transmission electron microscopy (TEM) revealed that the CsPbBr3 nanocrystals were successfully encapsulated by AlO(OH) matrices. The Brunauer–Emmett–Teller (BET) specific surface area was 234.96 m2 g -1 for AlO(OH) and 60.08 m2 g -1 for the CsPbBr3@AlO(OH) composites. The decrease in surface area could be attributed to the filling of the AlO(OH) pores by the CsPbBr3 nanocrystals. Further, the as-prepared composites showed red-shifted emission at 522 nm and a larger full width at half-maximum (FWHM) as 26 nm, compared with those of the CsPbBr3 nanocrystals with the emission at 517 nm and FWHM as 17 nm. More importantly, the emission intensity preserved 67% of the original value after a storage time of 120 h, but bare CsPbBr3 nanocrystals rapidly degraded within only 1 h in the polar ethanol solution. Finally, a light-emitting diode (LED) device was fabricated by coating the CsPbBr3@AlO(OH) composites and red commercial K2SiF6:Mn4+ phosphors on the surface of a blue InGaN chip, covering 96% of National Television Standards Committee. The results indicate that the obtained composites could be promising luminescent materials for backlit displays.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼