RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Modified automotive organic friction materials through infiltration of liquid carbon precursors

        이규정,Wu Ting-Yu,Lin Hsun-Yu,Cheng Huy-Zu,Wang Chih-Feng 한국탄소학회 2019 Carbon Letters Vol.29 No.4

        This research combines the liquid carbon precursor infiltration process for carbon/carbon composites with the fabrication procedure for organic, carbon-matrix friction materials in automotive. In the densification process, different liquid carbon precursors and numbers of densification cycle are adopted to investigate the influence on physical and mechanical properties, microstructure and tribological behavior. Experimental results indicate that the infiltration of liquid carbon precursors could improve the physical, mechanical properties and tribological performances of organic friction materials. The open porosity decreases with the number of densification cycle. Both bulk density and hardness increase with the number of densification cycle. The resin-based specimens show higher hardness and lower open porosity than those of the pitch-based specimens after each densification cycle. The tribological measurement of specimens with different carbon precursors shows that the pitch-based specimen shows lower and more stable friction coefficients and exhibits lower weight losses in comparison with other carbon precursors. Morphological observations show that a large area of smooth lubricative film was easily presented on the worn surfaces of the pitch-based specimens, whereas it was seldom observed on the worn surfaces of the preform specimen and resin-based specimens.

      • SCIESCOPUSKCI등재

        Modified automotive organic friction materials through infiltration of liquid carbon precursors

        Kuo‑Jung Lee,Ting‑Yu Wu,Hsun‑Yu Lin,Huy‑Zu Cheng,Chih‑Feng Wang 한국탄소학회 2019 Carbon Letters Vol.29 No.4

        This research combines the liquid carbon precursor infiltration process for carbon/carbon composites with the fabrication procedure for organic, carbon-matrix friction materials in automotive. In the densification process, different liquid carbon precursors and numbers of densification cycle are adopted to investigate the influence on physical and mechanical properties, microstructure and tribological behavior. Experimental results indicate that the infiltration of liquid carbon precursors could improve the physical, mechanical properties and tribological performances of organic friction materials. The open porosity decreases with the number of densification cycle. Both bulk density and hardness increase with the number of densification cycle. The resin-based specimens show higher hardness and lower open porosity than those of the pitch-based specimens after each densification cycle. The tribological measurement of specimens with different carbon precursors shows that the pitch-based specimen shows lower and more stable friction coefficients and exhibits lower weight losses in comparison with other carbon precursors. Morphological observations show that a large area of smooth lubricative film was easily presented on the worn surfaces of the pitch-based specimens, whereas it was seldom observed on the worn surfaces of the preform specimen and resin-based specimens.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼