RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Population ecology of Palmaria palmata (Palmariales, Rhodophyta) from harvested and non-harvested shores on Digby Neck, Nova Scotia, Canada

        Garbary, David J.,Beveridge, Leah F.,Flynn, Andrea D.,White, Katelyn L. The Korean Society of Phycology 2012 ALGAE Vol.27 No.1

        Population ecology of Palmaria palmata is described from the intertidal zone of Digby Neck and adjacent islands of Nova Scotia. The primary objectives were: to evaluate the difference in habitat specialization and population structure of P. palmata between harvest and non-harvest shores, and to characterize differences in thallus structure and frond sizes between epilithic and epiphytic populations. Harvest shores were gently sloping boulder fields with boulders typically about 0.5-1.0 m with dense cover of P. palmata on many of the rocks. Non-harvest shores (with or without P. palmata) consisted of boulders that were smaller or larger than harvest shores, or bedrock; when P. palmata was present on nonharvest sites it was typically epiphytic on other algae (e.g., Fucus spp., Mastocarpus stellatus, Devaleraea ramentacea). Harvestable epiphytic populations occurred only in high current areas. While there was little difference in average cover of P. palmata harvest and non-harvest shores ($31.2{\pm}13.7%$ vs. $19.4{\pm}7.3%$, mean ${\pm}$ standard deviation [SD]), the cover of P. palmata on harvest shores was highly skewed such that individual boulders often had >90% cover while adjacent rocks had little. Frond length of large fronds was greater on harvested shores, and mean frond density ($g\;m^{-2}$) was three times higher than the mean density on the non-harvested shores. Frond lengths of entire epiphytic and epilithic frond complements of 119 thalli from harvest beaches showed no difference in mean size of the largest fronds, and no difference in frond number per holdfast when epiphytic and epilithic thalli were compared.

      • SCIESCOPUSKCI등재

        Ascophyllum and Its Symbionts. VII. Three-way Interactions Among Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylli (Ascomycetes) and Vertebrata lanosa (Rhodophyta)

        Garbary, David J.,Deckert, Ron J.,Hubbard, Charlene B. The Korean Society of Phycology 2005 ALGAE Vol.20 No.4

        Ascophyllum nodosum (L.) Le Jolis has a systemic infection with the ascomycete Mycophycias ascophylli (Cotton) Kohlmeyer and Volkmann-Kohlmeyer with which it establishese a mutualistic symbiosis. In addition, A. nodosum is the host for the obligate red algal epiphyte, Vertebrata lanosa (L.) Christensen. Using light and electron microscopy we describe morphological and cytochemical changes occurring as a consequence of rhizoid penetration of V. lanosa into cortical host tissue. Rhizoids induce localized cell necrosis based on physical damage during rhizoid penetration. Host cells adjacent to the rhizoid selectively undergo a hypersensitive reaction in which they become darkly pigmented and become foci for hyphal development. Light and electron microscopy show that M. ascophylli forms dense hyphal aggregations on the surface of the V. lanosa rhizoid and extensive endophytic hyphal growths in the rhizoid wall. This is the first morphological evidence of an interaction between M. ascophylli and V. lanosa. We speculate that M. ascophylli may be interacting with V. lanosa to limit tissue damage to their shared host. In addition, the fungus provides a potential pathway for the transfer of materials (e.g., nutrients and photosynthate) between the two phototrophs.

      • SCIESCOPUSKCI등재

        Anatomical Differentiation and Photosynthetic Adaptation in Brown Algae

        Garbary, David J.,Kim, Kwang-Young The Korean Society of Phycology 2005 ALGAE Vol.20 No.3

        The photosynthetic parameters of dark- adapted minimum fluorescence (Fo) and maximum quantum yield of charge separation in PSII (Fv/Fm) were measured in transverse sections of eight species of marine Phaeophyceae (species of Laminariales, Fucales, Desmarestiales, Chordariales) using pulse amplified modulation (PAM) fluorometry. Within each transverse section fluorescence was measured in three regions corresponding to outer cortical and meristoderm cells, inner cortical cells and innermost medullary cells. Minimum fluorescence declined from 19-74% (mean of 39%) from outermost to innermost cells. Maximum quantum yield varied from 0.51-0.59 in outermost cell layers and this was reduced to 0.23-0.40 in innermost cell layers, with an average reduction of 50%. Despite the reduction Fo in medullary cells (inner), medullas of all species showed maximum quantum yields consistent with a photosynthetic role in carbon fixation. These results show that medullary cells of complex brown algae have more than a role in structure, storage or transport, and may also provide an important role in carbon fixation.

      • SCIESCOPUSKCI등재

        Marine macroalgae and associated flowering plants from the Keret Archipelago, White Sea, Russia

        Garbary, David J.,Tarakhovskaya, Elena R. The Korean Society of Phycology 2013 ALGAE Vol.28 No.3

        The marine algal flora of the Keret Archipelago ($66^{\circ}$ N, $33^{\circ}$ E) in the White Sea, Russia was investigated during 2008. Over 250 algal records from more than 15 islands and several sites on the adjoining mainland produced a total of 62 algal species. This raised the total from 56 to 88 species of Chlorophyta (23 species), Phaeophyceae (31 species), Rhodophyta (33 species), and Tribophyceae (1 species) of which seven were new records or verifications of ambiguous records for the White Sea and 11 species are new for the Keret Archipelago. The new or confirmed records included species of Blidingia, Eugomontia, Prasiola, Rosenvingiella, and Ulothrix (Chlorophyta), Acrochaetium, Colaconema (Rhodophyta), and Vaucheria (Tribophyceae). Five species of flowering plants (Aster, Plantago, Triglochin, and Zostera) were associated with the macrophytic algal vegetation of the region. Five fucoid algae in Pelvetia, Fucus, and Ascophyllum provide a picture of a temperate flora. Regardless, the overall species richness is consistent with an arctic nature to the flora. This discrepancy is attributed to the 'filter' provided by the Barents Sea of the Arctic Ocean for post-glacial colonization of the White Sea.

      • SCIESCOPUSKCI등재

        Temporal and spatial variation in the distribution of life history phases of Chondrus crispus (Gigartinales, Rhodophyta)

        Garbary, David J.,Tompkins, Elizabeth,White, Katelyn,Corey, Peter,Kim, Jang-K. The Korean Society of Phycology 2011 ALGAE Vol.26 No.1

        Thirty populations of Chondrus crispus Stackhouse from Nova Scotia were collected during the years 1993 to 2011. Taken from estuaries, wave exposed open coasts, high intertidal rock pools and shallow subtidal habitats, the populations were evaluated for relative abundance of tetrasporophytic and gametophytic life history phases. Over 2,800 thalli were characterized using the resorcinol-acetal test to distinguish the kappa- and lambda-carrageenan containing fronds of gametophytes and tetrasporophytes, respectively. These populations had $77{\pm}5%$ gametophytes (mean ${\pm}95%$ confidence interval), with most populations having gametophyte : sporophyte ratios ranging from 2 : 1 to 9 : 1. No population had a dominance of tetrasporophytes, although two populations had 1 : 1 ratios. A meta-analysis of our data along with previously published accounts showed no significant changes in gametophyte dominance with respect to hypothesized gradients of wave exposure, salinity, or water depth. Significant changes occurred in ratios at five sites where replicate sampling occurred in different years. We conclude that C. crispus in Maritime Canada has a natural ratio of 3 : 1 or greater in stable conditions, and that lower ratios represent recovery from disturbance in which bare substratum is created that is subsequently colonized by carpospores from remaining gametophytic thalli.

      • SCIESCOPUSKCI등재

        Cell Division in the Absence of Mitosis: The Unusual Case of the Fucoid Ascophyllum nodosum (L.) Le Jolis (Phaeophyceae)

        Garbary, David J.,Lawson, Greg,Clement, Kelly,Galway, Moira E. The Korean Society of Phycology 2009 ALGAE Vol.24 No.4

        Fluorescence and electron microscopy were used to examine epidermal shedding in the fucoid alga, Ascophyllum nodosum. Mature meristoderm cells are ca. 50-100 x 30-40 ${\mu}m$ and highly polarized, with a single nucleus and chloroplasts near the base of the cell. Nuclei in these cells undergo mitosis when they are dividing to form a new cortical cell towards the middle of the frond, or anticlinal divisions as part of frond elongation. However, cytokinesis also occurs regularly in these cells when a new periclinal wall is deposited at about 30% of the cell length from the apical end. The newly formed distal cells are anucleate and without chloroplasts. Following cytokinesis the tangential walls then break at the thinnest point. The whole process is synchronous in adjoining epidermal cells across large areas of the frond surface, and this layer dehisces from the thallus. This is the only known plant or algal system in which cytokinesis regularly occurs in the absence of mitosis. We consider this process a novel form of programmed cell death.

      • SCIESCOPUSKCI등재

        Ascophyllum nodosum and its symbionts: XI. The epiphyte Vertebrata lanosa performs better photosynthetically when attached to Ascophyllum than when alone

        Garbary, David J.,Miller, Anthony G.,Scrosati, Ricardo A. The Korean Society of Phycology 2014 ALGAE Vol.29 No.4

        Vertebrata lanosa is an abundant and obligate red algal epiphyte of Ascophyllum nodosum that forms part of a complex and highly integrated symbiotic system that includes the ascomycete, Mycophycias ascophylli. As part of ongoing studies to resolve interactions among species in the symbiosis, we used pulse amplitude modulation fluorimetry of chlorophyll a fluorescence, from photosystem II (PSII), to measure the maximum quantum yield ($F_v/F_m$) of PSII [$QY(II)_{max}$] and relative photosynthetic electron transport rates (rETR), as a function of light intensity, in order to evaluate the photosynthetic capacity of the two algal symbionts in the field and in the laboratory under different treatments. Our primary question was 'Is the ecological integration of these species reflected in a corresponding physiological integration involving photosynthetic process?' In the laboratory we measured changes in $QY(II)_{max}$ in thalli of V. lanosa and A. nodosum over one week periods when maintained together in either attached or detached treatments or when maintained separated from each other. While the $QY(II)_{max}$ of PSII of A. nodosum remained high and showed no significant variation among treatments, V. lanosa showed decreasing performance in the following conditions: V. lanosa attached to A. nodosum, V. lanosa in the same culture, but not attached to A. nodosum, and V. lanosa alone. These results are consistent with observations in which rETR was reduced in V. lanosa maintained alone versus attached to A. nodosum. Values for $QY(II)_{max}$ in V. lanosa measured in the field in fully submerged thalli were similar to those measured in the laboratory when V. lanosa was attached to it obligate host A. nodosum. Our results provide evidence of a physiological association of the epiphyte and its host that reflects the known ecology.

      • SCIESCOPUSKCI등재

        Mitochondrial Dynamics in Red Algae. 3. Filament Apices in Colaconemacaespitosum (Acrochaetiales) and Antithamnion cruciatum (Ceramiales)

        Garbary, David J.,Zuchang, Pei The Korean Society of Phycology 2006 ALGAE Vol.21 No.3

        Mitochondrial distribution and abundance were assessed during the growth of apical and subapical cells in the red algae Colaconema caespitosum (J. Agardh) Jackelman, Stegenga and Bolton and Antithamnion cruciatum (C. Agardh) Nägeli after staining with 3,3’-dihexyloxacarbocyanine iodide [DiOC6(3)] and 2,4’-dimethylaminostyryl-Nethylpyridinium iodide (DASPEI). In fully elongate apical cells of C. caespitosum there were 100-120 mitochondria. During apical cell enlargement and division there is a doubling and then halving of the mitochondrial numbers. Apical cells prior to cytokinesis in young filaments are smaller than in mature filaments (ca. 50 and 100 μm long, respectively) and have fewer mitochondria (ca. 100 and 120 mitochondria per cell, respectively). In older vegetative cells mitochondria tend to aggregate at opposite ends of the cells with some mitochondria associated with the central nucleus or at points of apparent branch initiation. There is a greater density of mitochondria in apical cells of smaller versus larger plants (one mitochondrion per 6.3 μm3 and 9.8 μm3, respectively), suggesting that apical cells of younger plants may be more metabolically active. Male and female gametophytic thalli of Antithamnion cruciatum had similar numbers of mitochondria in apical cells of indeterminate axes, as did gametophytic and sporophytic thalli. There were about 40-50 mitochondria in fully elongated apical cells with about half this number in newly divided apical and subapical cells. Apical cells of determinate branches had more mitochondria (60-77) than indeterminate branches (60-70 vs. 40-50). In both species and in all cell types mitochondrial numbers were highly correlated with cell size.

      • KCI등재

        Cell Division in the Absence of Mitosis: The Unusual Case of the Fucoid Ascophyllum nodosum (L.) Le Jolis (Phaeophyceae)

        David J. Garbary,Greg Lawson,Kelly Clement,Moira E. Galway 한국조류학회I 2009 ALGAE Vol.24 No.4

        Fluorescence and electron microscopy were used to examine epidermal shedding in the fucoid alga, Ascophyllum nodosum. Mature meristoderm cells are ca. 50-100 x 30-40 μm and highly polarized, with a single nucleus and chloroplasts near the base of the cell. Nuclei in these cells undergo mitosis when they are dividing to form a new cortical cell towards the middle of the frond, or anticlinal divisions as part of frond elongation. However, cytokinesis also occurs regularly in these cells when a new periclinal wall is deposited at about 30% of the cell length from the apical end. The newly formed distal cells are anucleate and without chloroplasts. Following cytokinesis the tangential walls then break at the thinnest point. The whole process is synchronous in adjoining epidermal cells across large areas of the frond surface, and this layer dehisces from the thallus. This is the only known plant or algal system in which cytokinesis regularly occurs in the absence of mitosis. We consider this process a novel form of programmed cell death.

      • KCI등재

        Marine macroalgae and associated flowering plants from the Keret Archipelago, White Sea, Russiaa

        David J. Garbary,Elena R. Tarakhovskaya 한국조류학회I 2013 ALGAE Vol.28 No.3

        The marine algal flora of the Keret Archipelago (66° N, 33° E) in the White Sea, Russia was investigated during 2008. Over 250 algal records from more than 15 islands and several sites on the adjoining mainland produced a total of 62 algal species. This raised the total from 56 to 88 species of Chlorophyta (23 species), Phaeophyceae (31 species), Rhodophyta (33 species), and Tribophyceae (1 species) of which seven were new records or verifications of ambiguous records for the White Sea and 11 species are new for the Keret Archipelago. The new or confirmed records included species of Blidingia, Eugomontia, Prasiola, Rosenvingiella, and Ulothrix (Chlorophyta), Acrochaetium, Colaconema (Rhodophyta), and Vaucheria (Tribophyceae). Five species of flowering plants (Aster, Plantago, Triglochin, and Zostera) were associated with the macrophytic algal vegetation of the region. Five fucoid algae in Pelvetia, Fucus, and Ascophyllum provide a picture of a temperate flora. Regardless, the overall species richness is consistent with an arctic nature to the flora. This discrepancy is attributed to the ‘filter’ provided by the Barents Sea of the Arctic Ocean for post-glacial colonization of the White Sea.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼