RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Assessment of vertical wind loads on lattice framework with application to thunderstorm winds

        Mara, T.G.,Galsworthy, J.K.,Savory, E. Techno-Press 2010 Wind and Structures, An International Journal (WAS Vol.13 No.5

        The focus of this article is on the assessment of vertical wind vector components and their aerodynamic impact on lattice framework, specifically two distinct sections of a guyed transmission tower. Thunderstorm winds, notably very localized events such as convective downdrafts (including downbursts) and tornadoes, result in a different load on a tower's structural system in terms of magnitude and spatial distribution when compared to horizontal synoptic winds. Findings of previous model-scale experiments are outlined and their results considered for the development of a testing rig that allows for rotation about multiple body axes through a series of wind tunnel tests. Experimental results for the wind loads on two unique experimental models are presented and the difference in behaviour discussed. For a model cross arm with a solidity ratio of approximately 30%, the drag load was increased by 14% when at a pitch angle of $20^{\circ}$. Although the effects of rotation about the vertical body axis, or the traditional 'angle of attack', are recognized by design codes as being significant, provisions for vertical winds are absent from each set of wind loading specifications examined. The inclusion of a factor to relate winds with a vertical component to the horizontal speed is evaluated as a vertical wind factor applicable to load calculations. Member complexity and asymmetric geometry often complicate the use of lattice wind loading provisions, which is a challenge that extends to future studies and codification. Nevertheless, the present work is intended to establish a basis for such studies.

      • Human-Induced Vibrations in Buildings

        Wesolowsky, Michael J.,Irwin, Peter A.,Galsworthy, Jon K.,Bell, Andrew K. Council on Tall Building and Urban Habitat Korea 2012 International journal of high-rise buildings Vol.1 No.1

        Occupant footfalls are often the most critical source of floor vibration on upper floors of buildings. Floor motions can degrade the performance of imaging equipment, disrupt sensitive research equipment, and cause discomfort for the occupants. It is essential that low-vibration environments be provided for functionality of sensitive spaces on floors above grade. This requires a sufficiently stiff and massive floor structure that effectively resists the forces exerted from user traffic. Over the past 25 years, generic vibration limits have been developed, which provide frequency dependent sensitivities for wide classes of equipment, and are used extensively in lab design for healthcare and research facilities. The same basis for these curves can be used to quantify acceptable limits of vibration for human comfort, depending on the intended occupancy of the space. When available, manufacturer's vibration criteria for sensitive equipment are expressed in units of acceleration, velocity or displacement and can be specified as zero-to-peak, peak-to-peak, or root-mean-square (rms) with varying frequency ranges and resolutions. Several approaches to prediction of floor vibrations are currently applied in practice. Each method is traceable to fundamental structural dynamics, differing only in the level of complexity assumed for the system response, and the required information for use as model inputs. Three commonly used models are described, as well as key features they possess that make them attractive to use for various applications. A case study is presented of a tall building which has fitness areas on two of the upper floors. The analysis predicted that the motions experienced would be within the given criteria, but showed that if the floor had been more flexible, the potential exists for a locked-in resonance response which could have been felt over large portions of the building.

      • KCI등재

        Assessment of vertical wind loads on lattice framework with application to thunderstorm winds

        T.G. Mara,J.K. Galsworthy,E. Savory 한국풍공학회 2010 Wind and Structures, An International Journal (WAS Vol.13 No.5

        The focus of this article is on the assessment of vertical wind vector components and their aerodynamic impact on lattice framework, specifically two distinct sections of a guyed transmission tower. Thunderstorm winds, notably very localized events such as convective downdrafts (including downbursts) and tornadoes, result in a different load on a tower’s structural system in terms of magnitude and spatial distribution when compared to horizontal synoptic winds. Findings of previous model-scale experiments are outlined and their results considered for the development of a testing rig that allows for rotation about multiple body axes through a series of wind tunnel tests. Experimental results for the wind loads on two unique experimental models are presented and the difference in behaviour iscussed. For a model cross arm with a solidity ratio of approximately 30%, the drag load was increased by 14% when at a pitch angle of 20o. Although the effects of rotation about the vertical body axis, or the traditional ‘angle of attack’, are recognized by design codes as being significant, provisions for vertical winds are absent from each set of wind loading specifications examined. The inclusion of a factor to relate winds with a vertical component to the horizontal speed is evaluated as a vertical wind factor applicable to load calculations. Member complexity and asymmetric geometry often complicate the use of lattice wind loading provisions, which is a challenge that extends to future studies and codification. Nevertheless, the present work is intended to establish a basis for such studies.

      • KCI등재

        Reliability of structures with tuned mass dampers under wind-induced motion: a serviceability consideration

        A. Pozos-Estrada,J.K. Galsworthy,H. P. Hong 한국풍공학회 2011 Wind and Structures, An International Journal (WAS Vol.14 No.2

        Excessive wind-induced motion in tall buildings can cause discomfort, affect health, and disrupt the daily activities of the occupants of a building. Dynamic vibration absorbers such as the tuned mass dampers (TMDs) can be used to reduce the wind-induced motion below a specified tolerable serviceability limit state (SLS) criterion. This study investigates whether the same probability of not exceeding specified wind-induced motion levels can be achieved by torsionally sensitive structures without/with linear/nonlinear TMDs subjected to partially correlated wind forces, if they are designed to just meet the same SLS criterion. For the analyses, different structures and the uncertainty in the response,wind load and perception of motion is considered. Numerical results indicate that for structures that are designed or retrofitted without or with optimum linear TMDs and satisfying the same SLS criterion, their probability of exceeding the considered criterion is very consistent, if the inherent correlation between the wind forces is considered in design. However, this consistency deteriorates if nonlinear TMDs are employed. Furthermore, if the correlation is ignored in the design, in many cases a slightly unconservative design, as compared to the designed by considering correlation, is achieved.

      • SCIESCOPUS

        Reliability of structures with tuned mass dampers under wind-induced motion: a serviceability consideration

        Pozos-Estrada, A.,Hong, H.P.,Galsworthy, J.K. Techno-Press 2011 Wind and Structures, An International Journal (WAS Vol.14 No.2

        Excessive wind-induced motion in tall buildings can cause discomfort, affect health, and disrupt the daily activities of the occupants of a building. Dynamic vibration absorbers such as the tuned mass dampers (TMDs) can be used to reduce the wind-induced motion below a specified tolerable serviceability limit state (SLS) criterion. This study investigates whether the same probability of not exceeding specified wind-induced motion levels can be achieved by torsionally sensitive structures without/with linear/nonlinear TMDs subjected to partially correlated wind forces, if they are designed to just meet the same SLS criterion. For the analyses, different structures and the uncertainty in the response, wind load and perception of motion is considered. Numerical results indicate that for structures that are designed or retrofitted without or with optimum linear TMDs and satisfying the same SLS criterion, their probability of exceeding the considered criterion is very consistent, if the inherent correlation between the wind forces is considered in design. However, this consistency deteriorates if nonlinear TMDs are employed. Furthermore, if the correlation is ignored in the design, in many cases a slightly unconservative design, as compared to the designed by considering correlation, is achieved.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼