RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIEKCI등재

        Bacterial Fruit Rot of Apricot Caused by Burkholderia cepacia in China

        Fang, Yuan,Li, Bin,Wang, Fang,Liu, Baoping,Wu, Zhiyi,Su, Ting,Qiu, Wen,Xie, Guanlin The Korean Society of Plant Pathology 2009 Plant Pathology Journal Vol.25 No.4

        An unreported disease of apricot was observed in orchards in Zhejiang province, China. Symptoms started as water soaked lesions on the fruit surface. Later, water-soaked areas developed and spread to the entire fruit, resulting in soft rot of the whole fruit. The causal organism isolated from symptomatic fruits was identified as Burkholderia cepacia based on its biochemical and physiological characteristics and confirmed by the cellular fatty acid composition and Biolog data as well as 16S rRNA gene sequence analysis. The bacterial isolates caused similar symptoms when inoculated onto fruits of apricot. In addition, European plum, Japanese plum, nectarine and kiwifruit were susceptible to the B. cepacia pathogen. However, the B. cepacia pathogen failed to cause any visible symptoms when it was inoculated onto 16 other fruits. This is the first report of a bacterial disease of apricot caused by B. cepacia in China.

      • SCIESCOPUSKCI등재

        Sealing Behavior Research on the Radial Ferrofluid Seal Structure with Oblique Teeth

        Fang Yuan,Siqi Wang,Decai Li,Long Che 한국자기학회 2022 Journal of Magnetics Vol.27 No.1

        Considering various unstable factors when the large-diameter spindle operates at a high speed, such as eccentricity, centrifugal force, etc., the ordinary ferrofluid seal structures will show poor sealing performance. This paper proposes an axial-radial bidirectional ferrofluid seal structure with radial oblique teeth to improve the sealing performance. The pressure resistance of the radial ferrofluid seal structure in the magnetic circuit is theoretically analyzed. The magnetic flux distribution characteristic in the gap of the oblique teeth is studied by magnetic field simulation. According to the analysis results of the magnetic induction intensity, to obtain the larger theoretical pressure resistance, the optimal angle of oblique teeth is 77.87°, 64.28° and 62.81° under the radial seal structure with different gaps of 0.1 mm, 0.15 mm and 0.2 mm, respectively. In addition, simulation analysis is carried out to obtain the fluid pressure and velocity distribution of the radial ferrofluid seal structure with different oblique teeth angles. When the oblique teeth angle is small, the pressure drops and gas flow speeds in the ferrofluid area are all lower, and the pressure resistance is higher.

      • KCI등재

        Square CFST columns under cyclic load and acid rain attack: Experiments

        Fang Yuan,Mengcheng Chen,Hong Huang 국제구조공학회 2019 Steel and Composite Structures, An International J Vol.30 No.2

        As China’s infrastructure continues to grow, concrete filled steel tubular (CFST) structures are attracting increasing interest for use in engineering applications in earthquake prone regions owing to their high section modulus, high strength, and good seismic performance. However, in a corrosive environment, the seismic resistance of the CFST columns may be affected to a certain extent. This study attempts to investigate the mechanical behaviours of square CFST members under both a cyclic load and an acid rain attack. First, the tensile mechanical properties of steel plates with various corrosion rates were tested. Second, a total of 12 columns with different corrosion rates were subjected to a reversed cyclic load and tested. Third, comparisons between the test results and the predicted ultimate strength by using four existing codes were carried out. It was found that the corrosion leads to an evident decrease in yield strength, elastic modulus, and tensile strain capacity of steel plates, and also to a noticeable deterioration in the ultimate strength, ductility, and energy dissipation of the CFST members. A larger axial force ratio leads to a more significant resulting deterioration of the seismic behaviour of the columns. In addition, the losses of both thickness and yield strength of an outer steel tube caused by corrosion should be taken into account when predicting the ultimate strength of corroded CFST columns.

      • KCI등재

        Analysis and monitoring on jacking construction of continuous box girder bridge

        Fangyuan Li,Peifeng Wu,Xinfei Yan 사단법인 한국계산역학회 2015 Computers and Concrete, An International Journal Vol.16 No.1

        It is hard to guarantee the strict synchronization of all the jacking-up points in the integral jacking of a large-span continuous box girder bridge. This paper took the Hengliaojing Bridge as background, which need jacking up as an object with 295m length and more than 10,000tons weight, adopted 3D software to calculate the unsynchronized jacking-up working conditions, and studied the relationships between the unsynchronized vertical difference and the girder’s deformation behaviour. The aim is to verify the maximum value of the unsynchronized vertical difference, and guide the construction and ensure safety. The monitoring system with its contents is introduced corresponding to the analysis. The results of the deck relative elevations prove that it is difficult to avoid the deck torsional deformation for jacking different; especially the side span shows more deformations for its smaller stiffness. The maximum difference is smaller than the limited value with acceptable stresses in the sections. The jacking heights of the pier in each construction step are controlled regularly according to the design. The shifting of the whole bridge in longitudinal direction is smaller than in transverse direction. The several beginning steps are the key to adjust their support reactions. This study is one parts of the fundamental research for the code “Technical specification for bridge jacking-up and reposition of China”. The whole synchronous jacking project of the main bridge set a world record by the World Record Association for the whole bridge jacking project with the longest span of the world.

      • KCI등재후보

        Experimental study on the cable rigidness and static behaviors of AERORail structure

        Fangyuan Li,Peifeng Wu,Dongjie Liu 국제구조공학회 2012 Steel and Composite Structures, An International J Vol.12 No.5

        This paper presented a new aerial platform-AERORail for rail transport and its structure evolution based on the elastic stiffness of cable; through the analysis on the cable properties when the cable supported a small service load with high-tensile force, summarized the theoretical basis of the AERORail structure and the corresponding simplified analysis model. There were 60 groups of experiments for a single naked cable model under different tensile forces and different services loads, and 48 groups of experiments for the cable with rail combined structure model. The experimental results of deflection characteristics were compared with the theoretical values for these two types of structures under the same conditions. It proved that the results almost met the classical cable theory. The reason is that a small deflection was required when this structure was applied. After the tension increments tests with moving load, it is verified that the relationships between the structure stiffness and tension force and service load are simple. Before further research and applications are made, these results are necessary for the determination of the reasonable and economic tensile force, allowable service load for the special span length for this new platform.

      • An experimental study of the mechanical performance of different types of girdling beams used to elevate bridges

        Fangyuan Li,Wenhao Li,Peifeng Wu 국제구조공학회 2023 Structural Engineering and Mechanics, An Int'l Jou Vol.85 No.4

        Girdling underpinning joints are key areas of concern for the pier-cutting bridge-lifting process. In this study, five specimens of an underpinning joint were prepared by varying the cross-sectional shape of the respective column, the process used to treat the beam-column interface (BCI), and the casting process. These specimens were subsequently analyzed through static failure tests. The BCI was found to be the weakest area of the joint, and the specimens containing a BCI underwent punching shear failure. The top of the girdling beam (GB) was subjected to a circumferential tensile force during slippage failure. Compared to the specimens with a smooth BCI, the specimens subjected to chiseling exhibited more pronounced circumferential compression at the BCI, which in turn considerably increased the shear capacity of the BCI and the ductility of the structure. The GB for the specimens containing a column with a circular cross-section exhibited better shear mechanical properties than the GB of other specimens. The BCI in specimens containing a column with a circular cross-section was more ductile during failure than that in specimens containing a column with a square cross-section.

      • KCI등재

        Effect of Grinding Parameters on Industrial Robot Grinding of CFRP and Defect Formation Mechanism

        Fangyuan Wang,Shanyong Xuan,Zongyu Chang,Kai Jin,Yulong Gao,Hao Wang,Qiye Song 한국정밀공학회 2024 International Journal of Precision Engineering and Vol.11 No.2

        The use of industrial robots for grinding CFRP is a green processing method. This method not only allows in-situ repair to reduce unnecessary waste of resources, but also produces no excessive contaminants. The effect of various process parameters, including grinding directions, the mesh size of grinding heads and rotating speed, on the grinding quality of Carbon Fiber Reinforced Polymers (CFRP) using industrial robots was investigated. The mechanism of grinding defects was also studied. According to the experimental results, the CFRP grinding process is mainly controlled by the rotating speed, number of grinding heads, and grinding direction. In particular, high-speed grinding helps to improve the surface quality of CFRP. In turn, the use of diamond grinding heads with too small or too large particles may reduce surface quality. Grinding quality changes with the grinding direction. In the grinding direction between 0° and 90°, the surface roughness increases with the angle (but drops at 60°), and The same trend is observed in the grinding direction between 90° and 150°, whereby the surface roughness increases with the angle (but drops at 120°). The surface quality of CFRP is thereby improved after grinding in the direction of 0°, 60°, 120° and 180°. Furthermore, the fiber pull-out occurs, when the feed direction and fiber orientation are aligned. Finally, the low-frequency vibration easily causes fiber pull-out defects.

      • KCI등재

        Synthesis and Solution Properties of Fluorinated Amphiphilic Polyacrylamide

        Fangyuan Zhao,Kai Du,Zhuo Yi,Chao Du,Zhao Fang,Bingquan Mao 한국고분자학회 2015 폴리머 Vol.39 No.3

        A series of hydrophobically associating fluorinated amphiphilic polyacrylamide copolymers with remarkably high heat resistance and salt tolerance were synthesized by free radical micellar copolymerization, using acrylamide (AM) and sodium 2-acrylamido-tetradecane sulfonate (AMC14S) as amphiphilic monomers, and 2-(perfluorooctyl) ethyl acrylate (PFHEA) as hydrophobic monomer. The structure of the terpolymer was characterized by FTIR, <SUP>1</SUP>H NMR and <SUP>19</SUP>F NMR. The solution properties of the terpolymers were investigated in details, and the results showed that the terpolymer solution had strong intermolecular hydrophobic association as the concentration exceeded the critical association concentration 1.5 g/L. The terpolymer solution possessed high surface activity, viscoelasticity, excellent heat resistance, salt tolerance and shearing resistance. The viscosity retention rate of copolymer solution was as high as 59.9% under the condition of fresh wastewater, 85℃ and a 60-days aging test.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼