RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach

        Eltaher, Mohamed A.,Almalki, Talaal A.,Ahmed, Khaled I.E.,Almitani, Khalid H. Techno-Press 2019 Advances in nano research Vol.7 No.1

        This paper focuses on two main objectives. The first one is to exploit an energy equivalent model and finite element method to evaluate the equivalent Young's modulus of single walled carbon nanotubes (SWCNTs) at any orientation angle by using tensile test. The calculated Young's modulus is validated with published experimental results. The second target is to exploit the finite element simulation to investigate mechanical buckling and natural frequencies of SWCNTs. Energy equivalent model is presented to describe the atomic bonding interactions and their chemical energy with mechanical structural energies. A Program of Nanotube modeler is used to generate a geometry of SWCNTs structure by defining its chirality angle, overall length of nanotube and bond length between two adjacent nodes. SWCNTs are simulated as a frame like structure; the bonds between each two neighboring atoms are treated as isotropic beam members with a uniform circular cross section. Carbon bonds is simulated as a beam and the atoms as nodes. A finite element model using 3D beam elements is built under the environment of ANSYS MAPDL environment to simulate a tensile test and characterize equivalent Young's modulus of whole CNT structure. Numerical results are presented to show critical buckling loads, axial and transverse natural frequencies of SWCNTs with different orientation angles and lengths. The understanding of mechanical behaviors of CNTs are essential in developing such structures due to their great potential in wide range of engineering applications.

      • SCIESCOPUS

        Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM

        Eltaher, Mohamed A.,Attia, Mohamed A.,Soliman, Ahmed E.,Alshorbagy, Amal E. Techno-Press 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.66 No.1

        Cracking can lead to unexpected sudden failure of normally ductile metals subjected to a tensile stress, especially at elevated temperature. This article is raised to study the application of a composite material instead of the traditional carbon steel material used in the natural gas transmission pipeline because the cracks occurs in the pipeline initiate at its internal surface which is subjected to internal high fluctuated pressure and unsteady temperature according to actual operation conditions. Functionally graded material (FGM) is proposed to benefit from the ceramics durability and its surface hardness against erosion. FGM properties are graded at the radial direction. Finite element method (FEM) is applied and solved by ABAQUS software including FORTRAN subroutines adapted for this case of study. The stress intensity factor (SIF), temperatures and stresses are discussed to obtain the optimum FGM configuration under the actual conditions of pressure and temperature. Thermoelastic analysis of a plane strain model is adopted to study SIF and material response at various crack depths.

      • On the static stability of nonlocal nanobeams using higher-order beam theories

        Eltaher, M.A.,Khater, M.E.,Park, S.,Abdel-Rahman, E.,Yavuz, M. Techno-Press 2016 Advances in nano research Vol.4 No.1

        This paper investigates the effects of thermal load and shear force on the buckling of nanobeams. Higher-order shear deformation beam theories are implemented and their predictions of the critical buckling load and post-buckled configurations are compared to those of Euler-Bernoulli and Timoshenko beam theories. The nonlocal Eringen elasticity model is adopted to account a size-dependence at the nano-scale. Analytical closed form solutions for critical buckling loads and post-buckling configurations are derived for proposed beam theories. This would be helpful for those who work in the mechanical analysis of nanobeams especially experimentalists working in the field. Results show that thermal load has a more significant impact on the buckling behavior of simply-supported beams (S-S) than it has on clamped-clamped (C-C) beams. However, the nonlocal effect has more impact on C-C beams that it does on S-S beams. Moreover, it was found that the predictions obtained from Timoshenko beam theory are identical to those obtained using all higher-order shear deformation theories, suggesting that Timoshenko beam theory is sufficient to analyze buckling in nanobeams.

      • KCI등재

        Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects

        Mohamed A Eltaher,Fatema-Alzahraa Omar,Waleed S. Abdalla,Abdallah M. Kabeel,Amal E. Alshorbagy 국제구조공학회 2020 Structural Engineering and Mechanics, An Int'l Jou Vol.76 No.1

        This manuscript tends to investigate influences of nanoscale and surface energy on a static bending and free vibration of piezoelectric perforated nanobeam structural element, for the first time. Nonlocal differential elasticity theory of Eringen is manipulated to depict the long–range atoms interactions, by imposing length scale parameter. Surface energy dominated in nanoscale structure, is included in the proposed model by using Gurtin–Murdoch model. The coupling effect between nonlocal elasticity and surface energy is included in the proposed model. Constitutive and governing equations of nonlocal-surface perforated Euler–Bernoulli nanobeam are derived by Hamilton’s principle. The distribution of electric potential for the piezoelectric nanobeam model is assumed to vary as a combination of a cosine and linear variation, which satisfies the Maxwell’s equation. The proposed model is solved numerically by using the finite-element method (FEM). The present model is validated by comparing the obtained results with previously published works. The detailed parametric study is presented to examine effects of the number of holes, perforation size, nonlocal parameter, surface energy, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric perforated nanobeams. It is found that the effect of surface stresses becomes more significant as the thickness decreases in the range of nanometers. The effect of number of holes becomes significant in the region 0.2≤α≤0.8. The current model can be used in design of perforated nano-electro-mechanical systems (PNEMS).

      • KCI등재

        Nonlinear buckling and free vibration of curved CNTs by doublet mechanics

        Mohamed A. Eltaher,Nazira Mohamed,Salwa A. Mohamed 국제구조공학회 2020 Smart Structures and Systems, An International Jou Vol.26 No.2

        In this manuscript, static and dynamic behaviors of geometrically imperfect carbon nanotubes (CNTs) subject to different types of end conditions are investigated. The Doublet Mechanics (DM) theory, which is length scale dependent theory, is used in the analysis. The Euler-Bernoulli kinematic and nonlinear mid-plane stretching effect are considered through analysis. The governing equation of imperfect CNTs is a sixth order nonlinear integro-partial-differential equation. The buckling problem is discretized via the differential-integral-quadrature method (DIQM) and then it is solved using Newton's method. The equation of linear vibration problem is discretized using DIQM and then solved as a linear eigenvalue problem to get natural frequencies and corresponding mode shapes. The DIQM results are compared with analytical ones available in the literature and excellent agreement is obtained. The numerical results are depicted to illustrate the influence of length scale parameter, imperfection amplitude and shear foundation constant on critical buckling load, post-buckling configuration and linear vibration behavior. The current model is effective in designing of NEMS, nano-sensor and nano-actuator manufactured by CNTs.

      • Vibrations and stress analysis of rotating perforated beams by using finite elements method

        M.A. Eltaher,Hanaa E. Abdelmoteleb,Ahmed Amin Daikh,Alaa A. Abdelrahman 국제구조공학회 2021 Steel and Composite Structures, An International J Vol.41 No.4

        This paper presents a computational finite element model to study and analyze vibrations and stresses of regularly perforated rotated beams considering different perforation configurations, for the first time. Both regular circular and squared perforation configurations are considered. The geometry of the perforated beam is modelled using shell finite elements. The finite elements equations of motion are derived for a straight perforated cantilevered beam with a symmetrical cross section. The proposed computational procedure is checked by comparing the obtained results with the available results in the literature and an excellent agreement is observed. The free vibration response, as well as stress distributions throughout the beam, are investigated. The obtained results reveal that the perforation configuration, as well as the rotating speed, have remarkable effects on the dynamics and stress distributions of the rotating perforated beams.

      • KCI등재

        Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM

        Mohamed A. Eltaher,Mohamed A. Attia,Ahmed E. Soliman,Amal E. Alshorbagy 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.66 No.1

        Cracking can lead to unexpected sudden failure of normally ductile metals subjected to a tensile stress, especially at elevated temperature. This article is raised to study the application of a composite material instead of the traditional carbon steel material used in the natural gas transmission pipeline because the cracks occurs in the pipeline initiate at its internal surface which is subjected to internal high fluctuated pressure and unsteady temperature according to actual operation conditions. Functionally graded material (FGM) is proposed to benefit from the ceramics durability and its surface hardness against erosion. FGM properties are graded at the radial direction. Finite element method (FEM) is applied and solved by ABAQUS software including FORTRAN subroutines adapted for this case of study. The stress intensity factor (SIF), temperatures and stresses are discussed to obtain the optimum FGM configuration under the actual conditions of pressure and temperature. Thermoelastic analysis of a plane strain model is adopted to study SIF and material response at various crack depths.

      • KCI등재

        Buckling and stability analysis of sandwich beams subjected to varying axial loads

        Mohamed A. Eltaher,Salwa A Mohamed 국제구조공학회 2020 Steel and Composite Structures, An International J Vol.34 No.2

        This article presented a comprehensive model to study static buckling stability and associated mode-shapes of higher shear deformation theories of sandwich laminated composite beam under the compression of varying axial load function. Four higher order shear deformation beam theories are considered in formulation and analysis. So, the model can consider the influence of both thick and thin beams without needing to shear correction factor. The compression force can be described through axial direction by uniform constant, linear and parabolic distribution functions. The Hamilton’s principle is exploited to derive equilibrium governing equations of unified sandwich laminated beams. The governing equilibrium differential equations are transformed to algebraic system of equations by using numerical differential quadrature method (DQM). The system of equations is solved as an eigenvalue problem to get critical buckling loads and their corresponding mode-shapes. The stability of DQM in determining of buckling loads of sandwich structure is performed. The validation studies are achieved and the obtained results are matched with those. Parametric studies are presented to figure out effects of in-plane load type, sandwich thickness, fiber orientation and boundary conditions on buckling loads and mode-shapes. The present model is important in designing process of aircraft, naval structural components, and naval structural when non-uniform in-plane compressive loading is dominated.

      • KCI등재

        Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts

        Mohamed A. Eltaher,Fatema-Alzahraa Omar,Azza M. Abdraboh,Waleed S. Abdalla,Amal E. Alshorbagy 국제구조공학회 2020 Smart Structures and Systems, An International Jou Vol.25 No.2

        This work presents a modified continuum model to explore and investigate static and vibration behaviors of perforated piezoelectric NEMS structure. The perforated nanostructure is modeled as a thin perforated nanobeam element with Euler.Bernoulli kinematic assumptions. A size scale effect is considered by included a nonlocal constitutive equation of Eringen in differential form. Modifications of geometrical parameters of perforated nanobeams are presented in simplified forms. To satisfy the Maxwell's equation, the distribution of electric potential for the piezoelectric nanobeam model is assumed to be varied as a combination of a cosine and linear functions. Hamilton's principle is exploited to develop mathematical governing equations. Modified numerical finite model is adopted to solve the equation of motion and equilibrium equation. The proposed model is validated with previous respectable work. Numerical investigations are presented to illustrate effects of the number of perforated holes, perforation size, nonlocal parameter, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric nanobeams.

      • KCI등재

        Bending behavior of squared cutout nanobeams incorporating surface stress effects

        Mohamed A Eltaher,Alaa A. Abdelrahman 국제구조공학회 2020 Steel and Composite Structures, An International J Vol.36 No.2

        In nanosized structures as the surface area to the bulk volume ratio increases the classical continuum mechanics approaches fails to investigate the mechanical behavior of such structures. In perforated nanobeam structures, more decrease in the bulk volume is obtained due to perforation process thus nonclassical continuum approaches should be employed for reliable investigation of the mechanical behavior these structures. This article introduces an analytical methodology to investigate the size dependent, surface energy, and perforation impacts on the nonclassical bending behavior of regularly squared cutout nanobeam structures for the first time. To do this, geometrical model for both bulk and surface characteristics is developed for regularly squared perforated nanobeams. Based on the proposed geometrical model, the nonclassical Gurtin-Murdoch surface elasticity model is adopted and modified to incorporate the surface energy effects in perforated nanobeams. To investigate the effect of shear deformation associated with cutout process, both Euler-Bernoulli and Timoshenko beams theories are developed. Mathematical model for perforated nanobeam structure including surface energy effects are derived in comprehensive procedure and nonclassical boundary conditions are presented. Closed forms for the nonclassical bending and rotational displacements are derived for both theories considering all classical and nonclassical kinematics and kinetics boundary conditions. Additionally, both uniformly distributed and concentrated loads are considered. The developed methodology is verified and compared with the available results and an excellent agreement is noticed. Both classical and nonclassical bending profiles for both thin and thick perforated nanobeams are investigated. Numerical results are obtained to illustrate effects of beam filling ratio, the number of hole rows through the cross section, surface material characteristics, beam slenderness ratio as well as the boundary and loading conditions on the non-classical bending behavior of perforated nanobeams in the presence of surface effects. It is found that, the surface residual stress has more significant effect on the bending deflection compared with the corresponding effect of the surface elasticity, Es. The obtained results are supportive for the design, analysis and manufacturing of perforated nanobeams.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼