RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Effectiveness of different standard and advanced pushover procedures for regular and irregular RC frames

        Landi, Luca,Pollioa, Bernardino,Diotallevi, Pier Paolo Techno-Press 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.51 No.3

        The purpose of the research presented in this paper was to investigate the effectiveness of several conventional, multi-modal and adaptive pushover procedures. In particular, an extensive numerical study was performed considering eight RC frames characterized by a variable number of storeys and different properties in terms of regularity in elevation. The results of pushover analyses were compared with those of nonlinear dynamic analyses, which were carried out considering different earthquake records and increasing values of earthquake intensity. The study was performed with reference to base shear-top displacement curves and to different storey response parameters. The obtained results allowed a direct comparison between the pushover procedures, which in general were able to give a fairly good estimate of seismic demand with a tendency to better results for lower frames. The advanced procedures, in particular the multi-modal pushover, provided an improvement of the results, more evident for the irregular frames.

      • KCI등재

        Effectiveness of different standard and advanced pushover procedures for regular and irregular RC frames

        Luca Landi,Bernardino Pollio,Pier Paolo Diotallevi 국제구조공학회 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.51 No.3

        The purpose of the research presented in this paper was to investigate the effectiveness of several conventional, multi-modal and adaptive pushover procedures. In particular, an extensive numerical study was performed considering eight RC frames characterized by a variable number of storeys and different properties in terms of regularity in elevation. The results of pushover analyses were compared with those of nonlinear dynamic analyses, which were carried out considering different earthquake records andincreasing values of earthquake intensity. The study was performed with reference to base shear-top displacement curves and to different storey response parameters. The obtained results allowed a direct comparison between the pushover procedures, which in general were able to give a fairly good estimate of seismic demand with a tendency to better results for lower frames. The advanced procedures, in particular the multi-modal pushover, provided an improvement of the results, more evident for the irregular frames.

      • Clump interpolation error for the identification of damage using decentralized sensor networks

        Said Quqa,Pier Francesco Giordano,Maria Pina Limongelli,Luca Landi,Pier Paolo Diotallevi 국제구조공학회 2021 Smart Structures and Systems, An International Jou Vol.27 No.2

        Recent developments in the field of smart sensing systems enable performing simple onboard operations which are increasingly used for the decentralization of complex procedures in the context of vibration-based structural health monitoring (SHM). Vibration data collected by multiple sensors are traditionally used to identify damage-sensitive features (DSFs) in a centralized topology. However, dealing with large infrastructures and wireless systems may be challenging due to their limited transmission range and to the energy consumption that increases with the complexity of the sensing network. Local DSFs based on data collected in the vicinity of inspection locations are the key to overcome geometric limits and easily design scalable wireless sensing systems. Furthermore, the onboard pre-processing of the raw data is necessary to reduce the transmission rate and improve the overall efficiency of the network. In this study, an effective method for real-time modal identification is used together with a local approximation of a damage feature, the interpolation error, to detect and localize damage due to a loss of stiffness. The DSF is evaluated using the responses recorded at small groups of sensors organized in a decentralized topology. This enables the onboard damage identification in real time thereby reducing computational effort and memory allocation requirements. Experimental tests conducted using real data confirm the robustness of the proposed method and the potential of its implementation onboard decentralized sensor networks.

      • On the use of multivariate autoregressive models for vibration-based damage detection and localization

        Alessandra Achilli,Giacomo Bernagozzi,Raimondo Betti,Pier Paolo Diotallevi,Luca Landi,Said Quqa,Eleonora M. Tronci 국제구조공학회 2021 Smart Structures and Systems, An International Jou Vol.27 No.2

        This paper proposes a novel method suitable for vibration-based damage identification of civil structures and infrastructures under ambient excitation. The damage-sensitive feature employed in the presented algorithm consists of a vector of multivariate autoregressive parameters estimated from the vibration responses collected at different locations of the analyzed structure. Outlier analysis and statistical pattern recognition are exploited for damage detection and localization. In particular, the Mahalanobis distance between a set of reference (i.e., “healthy”) and inspection parameters is evaluated. A threshold is then selected to determine whether the inspection vectors refer to damaged or undamaged conditions. The effectiveness of the proposed approach is proved using numerical simulations and experimental data from a benchmark test. The analysis results show that the largest values of Mahalanobis distance can be found in the proximity of those sensors closest to the damaged elements. Thus, the Mahalanobis distance applied to vectors of multivariate autoregressive parameters has proven to be a robust indicator for damage detection and localization.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼