RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Blood amino acids profile responding to heat stress in dairy cows

        Jiang Guo,Shengtao Gao,Suyu Quan,Yangdong Zhang,Dengpan Bu,Jiaqi Wang 아세아·태평양축산학회 2018 Animal Bioscience Vol.31 No.1

        Objective: The objective of this experiment was to investigate the effects of heat stress on milk protein and blood amino acid profile in dairy cows. Methods: Twelve dairy cows with the similar parity, days in milk and milk yield were randomly divided into two groups with six cows raised in summer and others in autumn, respectively. Constant managerial conditions and diets were maintained during the experiment. Measurements and samples for heat stress and no heat stress were obtained according to the physical alterations of the temperature-humidity index. Results: Results showed that heat stress significantly reduced the milk protein content (p<0.05). Heat stress tended to decrease milk yield (p = 0.09). Furthermore, heat stress decreased dry matter intake, the concentration of blood glucose and insulin, and glutathione peroxidase activity, while increased levels of non-esterified fatty acid and malondialdehyde (p<0.05). Additionally, the concentrations of blood Thr involved in immune response were increased under heat stress (p<0.05). The concentration of blood Ala, Glu, Asp, and Gly, associated with gluconeogenesis, were also increased under heat stress (p<0.05). However, the concentration of blood Lys that promotes milk protein synthesis was decreased under heat stress (p<0.05). Conclusion: In conclusion, this study revealed that more amino acids were required for maintenance but not for milk protein synthesis under heat stress, and the decreased availability of amino acids for milk protein synthesis may be attributed to competition of immune response and gluconeogenesis.

      • KCI등재

        Rubber seed oil and flaxseed oil supplementation on serum fatty acid profile, oxidation stability of serum and milk, and immune function of dairy cows

        Yu Pi,Lu Ma,Hongrong Wang,Jiaqi Wang,Jianchu Xu,Dengpan Bu 아세아·태평양축산학회 2019 Animal Bioscience Vol.32 No.9

        Objective: This study was designed to investigate the effect of diet supplementation with rubber seed oil and flaxseed oil on serum fatty acids profile, oxidation stability of serum and milk, and immune function of dairy cows. Methods: Forty-eight mid-lactation Holstein dairy cows were randomly assigned to one of four treatments for 8 wk, including basal diet (CON) or the basal diet supplemented with 4% rubber seed oil (RO), 4% flaxseed oil (FO) or 2% rubber seed oil plus 2% flaxseed oil (RFO) on a dry matter basis. Results: Compared with CON, all the oil groups increased the levels of trans-11 C18:1 (vaccenic acid), cis-9, trans-11 C18:2 (conjugated linoleic acid, CLA) and C18:3 (α-linolenic acid, ALA) in serum. Both the activity of glutathione peroxidase and catalase in serum and milk in oil groups were decreased, which were negatively correlated with the levels of cis-9, trans-11 CLA and ALA. The concentrations of proinflammatory factors (tumor necrosis factor α and interferon γ) in serum of oil groups were lower than that from the CON cows. Conclusion: These results indicate that diet supplementation with RO or FO could alter serum fatty acid profile and enhance the immune function of dairy cows. However, the negative effect on milk oxidation stability should be considered when feeding these n-3 polyunsaturated fatty acid-enriched oils in dairy production.

      • SCIESCOPUSKCI등재

        Variations of Immunoglobulins in Colostrum and Immune Milk as Affected by Antigen Releasing Devices

        Zhaoa, Shengguo,Zhanga, Chungang,Wang, Jiaqi,Liu, Guanglei,Bu, Dengpan,Cheng, Jinbo,Zhou, Lingyun Asian Australasian Association of Animal Productio 2010 Animal Bioscience Vol.23 No.9

        This work was conducted to examine the variation of immunoglobulins (Igs) in serum, immune milk, normal milk and colostrum upon implantation of a new Antigen Releasing Device (ARD). The core of each ARD housed an immunostimulating complex (ISCOM) that was made of adjuvant Quil A and type XIII lipase from a Pseudomonas sp. Each ARD was coated with polylactic acid, known as polylactide, that controls antigen release. Twenty lactating Chinese Holstein cows were divided into 2 groups (n = 10): test group and control group. All cows in the test group were implanted with a single injection in the right iliac lymph node with 3 types of ARDs, which were designed to release the antigens at d 0, 14 and 28 post-implantation. Blood and milk samples were collected from both groups, and colostrum samples were also collected from other post-partum cows in the same farm. Concentrations of $IgG_1$, IgA and IgM in whey and serum were measured by sandwich ELISA. The results showed that the $IgG_1$, IgA and IgM concentrations in serum and whey from the test group were higher than from the control group. Among the three Igs measured, the $IgG_1$ concentration in serum was significantly higher at d 40 after ARD implantation, and the $IgG_1$ concentration in whey peaked at d 9, 17 and 30, which corresponded with release of the antigen. Based on Pearson's correlation between Ig concentration and production parameters, IgA concentration in normal milk was positively correlated with lactation period, which reflected IgA changes during the lactation period in immune milk. In colostrum, $IgG_1$, IgA and IgM decreased abruptly from d 0 to 3, and then decreased slightly. In conclusion, serum $IgG_1$ concentration can be affected by controlled release of the ARD, while whey IgA levels are primarily affected by lactation period. These results may be useful in future studies designed to regulate concentrations of Igs in immune milk.

      • SCIESCOPUSKCI등재

        Effects of low dietary cation-anion difference induced by ruminal ammonium chloride infusion on performance, serum, and urine metabolites of lactating dairy cows

        Wang, Kun,Nan, Xuemei,Zhao, Puyi,Liu, Wei,Drackley, James K.,Liu, Shijie,Zhang, Kaizhan,Bu, Dengpan Asian Australasian Association of Animal Productio 2018 Animal Bioscience Vol.31 No.5

        Objective: The objective of the present study was to determine ammonium chloride tolerance of lactating dairy cows, by examining effects of negative dietary cation anion difference (DCAD) induced by ruminal ammonium chloride infusion on performance, serum and urine minerals, serum metabolites and enzymes of lactating dairy cows. Methods: Four primiparous lactating Chinese Holstein cows fitted with ruminal cannulas were infused with increasing amounts (0, 150, 300, or 450 g/d) of ammonium chloride in a crossover design. The DCAD of the base diet was 279 mEq/kg dry matter (DM) using the DCAD formula (Na + K - Cl - S)/kg of DM. Ammonium chloride infusion added the equivalent of 0, 128, 330, and 536 mEq/kg DM of Cl in treatments. According to the different dry matter intakes (DMI), the resulting actual DCAD of the four treatments was 279, 151, -51, and -257 mEq/kg DM, respectively. Results: DMI decreased linearly as DCAD decreased. Yields of milk, 4% fat-corrected milk, energy-corrected milk, milk fat, and milk protein decreased linearly as DCAD decreased. Concentrations of milk protein and milk urea nitrogen increased linearly with decreasing DCAD. Concentration of Cl- in serum increased linearly and concentration of PO43- in serum increased quadratically as DCAD decreased. Urine pH decreased linearly and calculated urine volume increased linearly with decreasing DCAD. Linear increases in daily urinary excretion of $Cl^-$, $Ca^{2+}$, $PO_4{^{3-}}$, urea N, and ammonium were observed as DCAD decreased. Activities of alanine aminotransferase, aspartate aminotransferase, and ${\gamma}-glutamyl$ transferase in serum and urea N concentration in serum increased linearly as DCAD decreased. Conclusion: In conclusion, negative DCAD induced by ruminal ammonium chloride infusion resulted in a metabolic acidosis, had a negative influence on performance, and increased serum enzymes indicating potential liver and kidney damage in lactating dairy cows. Daily ammonium chloride intake by lactating dairy cows should not exceed 300 g, and 150 g/d per cow may be better.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼