RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The game of safety behaviors among different departments of the nuclear power plants

        Da Yuan,Hanqing Wang,Jian Wu 한국원자력학회 2022 Nuclear Engineering and Technology Vol.54 No.3

        To study the developments and variations of unsafe behaviors in nuclear power plants thus reduce thepossibility of human-related accidents, this paper, based on the Game Theory, focused on the changes inbenefits of the Department of Management, Operational and Emergency in a nuclear power plant, andestablished the expected revenue functions of these departments. Additionally, the preventive measuresof unsafe behaviors in nuclear power plants were also presented in terms of these 3 departments. Resultsshowed that the violations of the Operation Department (OD) and the Emergency Department (ED) werenot only relevant with the factors such as their own risks, costs, and the responsibility-sharing due toaccidents, but also affected by the safety investments from the Management Department (MD). Furthermore, results also showed that the accident-induced responsibility-sharing of both the OD andthe ED would rise, if the MD increased the investments in safety. As a result, the probability of violationbehaviors of these 3 departments would be attenuated consciously, which would reduce the unsafebehaviors in the nuclear power plants significantly

      • KCI등재

        손 끝 온도변화가 젊은 성인의 다중 손가락 동작에 미치는 효과

        ( Narae Shin ),( Dayuan Xu ),( Jun Kyung Song ),( Jaebum Park ) 한국운동역학회 2019 한국운동역학회지 Vol.29 No.3

        Objective: This study examined the effects of stimulating fingertip temperature on the patterns of force sharing and stability properties during multi-finger force production tasks. Method: 9 adult subjects (male: 3, female: 6, age: 26.11±4.01 yrs, height: 169.22±5.97 cm, weight: 61.44±11.27 kg) participated in this study. The experiment consisted of three blocks: 1) maximal voluntary contraction (MVC) task, 2) single-finger ramp task to quantify enslaving (i.e., unintended force production by non-task fingers), and 3) 12 trials of multi-finger steady-state force production task at 20% MVC. There were three temperature conditions including body-temperature (i.e., control condition), 40℃, and 43℃, and the stimulation was given to the index finger only for all experimental conditions. Results: There were no significant differences in the MVC forces, enslaving, and the accuracy of performance during the steady-state task between the conditions. However, the share of stimulated index finger force increased with the index fingertip temperature, while the share of middle finger force decreased. Also, the coefficient of variation of both index and middle finger forces over repetitive trials increased with the index fingertip temperature. Under the framework of the uncontrolled manifold (UCM) hypothesis used to quantify indices of multi-finger synergies (i.e., stability property) stabilizing total force during the steady-state task, the two variance components within the UCM analysis increased together with the fingertip temperature, while no changes in the synergy indices between the conditions. Conclusion: The current results showed that fingertip temperature stimulation only to index finger does not affect to muscle force production capability of multi-finger, independence of individual fingers, and force production accuracy by the involvement of all four fingers. The effect of fingertip temperature on the sharing pattern and force variation may be due to diffuse reflex effects of the induced afferent activity on alpha-motoneuronal pools. However, the unchanged stability properties may be the reflection of the active error compensation strategies by nonstimulated finger actions.

      • KCI등재

        Effect of Kinetic Degrees of Freedom of the Fingers on the Task Performance during Force Production and Release: Archery Shooting-like Action

        ( Kitae Kim ),( Dayuan Xu ),( Jaebum Park ) 한국운동역학회 2017 한국운동역학회지 Vol.27 No.2

        Objective: The purpose of this study was to examine the effect of changes in degrees of freedom of the fingers (i.e., the number of the fingers involved in tasks) on the task performance during force production and releasing task. Method: Eight right-handed young men (age: 29.63±3.02 yr, height: 1.73±0.04 m, weight: 70.25±9.05 kg) participated in this study. The subjects were required to press the transducers with three combinations of fingers, including the index-middle (IM), index-middle-ring (IMR), and index-middle-ring-little (IMRL). During the trials, they were instructed to maintain a steady-state level of both normal and tangential forces within the first 5 sec. After the first 5 sec, the subjects were instructed to release the fingers on the transducers as quickly as possible at a self-selected manner within the next 5 sec, resulting in zero force at the end. Customized MATLAB codes (MathWorks Inc., Natick, MA, USA) were written for data analysis. The following variables were quantified: 1) finger force sharing pattern, 2) root mean square error (RMSE) of force to the target force in three axes at the aiming phase, 3) the time duration of the release phase (release time), and 4) the accuracy and precision indexes of the virtual firing position. Results: The RMSE was decreased with the number of fingers increased in both normal and tangential forces at the steady-state phase. The precision index was smaller (more precise) in the IMR condition than in the IM condition, while no significant difference in the accuracy index was observed between the conditions. In addition, no significant difference in release time was found between the conditions. Conclusion: The study provides evidence that the increased number of fingers resulted in better error compensation at the aiming phase and performed a more constant shooting (i.e., smaller precision index). However, the increased number of fingers did not affect the release time, which may influence the consistency of terminal performance. Thus, the number of fingers led to positive results for the current task.

      • KCI등재

        Effect of Kinetic Degrees of Freedom of the Fingers on the Task Performance during Force Production and Release: Archery Shooting-like Action

        Kim, Kitae,Xu, Dayuan,Park, Jaebum Korean Society of Sport Biomechanics 2017 한국운동역학회지 Vol.27 No.2

        Objective: The purpose of this study was to examine the effect of changes in degrees of freedom of the fingers (i.e., the number of the fingers involved in tasks) on the task performance during force production and releasing task. Method: Eight right-handed young men (age: $29.63{\pm}3.02yr$, height: $1.73{\pm}0.04m$, weight: $70.25{\pm}9.05kg$) participated in this study. The subjects were required to press the transducers with three combinations of fingers, including the index-middle (IM), index-middle-ring (IMR), and index-middle-ring-little (IMRL). During the trials, they were instructed to maintain a steady-state level of both normal and tangential forces within the first 5 sec. After the first 5 sec, the subjects were instructed to release the fingers on the transducers as quickly as possible at a self-selected manner within the next 5 sec, resulting in zero force at the end. Customized MATLAB codes (MathWorks Inc., Natick, MA, USA) were written for data analysis. The following variables were quantified: 1) finger force sharing pattern, 2) root mean square error (RMSE) of force to the target force in three axes at the aiming phase, 3) the time duration of the release phase (release time), and 4) the accuracy and precision indexes of the virtual firing position. Results: The RMSE was decreased with the number of fingers increased in both normal and tangential forces at the steady-state phase. The precision index was smaller (more precise) in the IMR condition than in the IM condition, while no significant difference in the accuracy index was observed between the conditions. In addition, no significant difference in release time was found between the conditions. Conclusion: The study provides evidence that the increased number of fingers resulted in better error compensation at the aiming phase and performed a more constant shooting (i.e., smaller precision index). However, the increased number of fingers did not affect the release time, which may influence the consistency of terminal performance. Thus, the number of fingers led to positive results for the current task.

      • KCI등재
      • KCI등재

        손 끝 온도변화가 젊은 성인의 다중 손가락 동작에 미치는 효과

        Shin, Narae,Xu, Dayuan,Song, Jun Kyung,Park, Jaebum 한국운동역학회 2019 한국운동역학회지 Vol.29 No.3

        Objective: This study examined the effects of stimulating fingertip temperature on the patterns of force sharing and stability properties during multi-finger force production tasks. Method: 9 adult subjects (male: 3, female: 6, age: $26.11{\pm}4.01yrs$, height: $169.22{\pm}5.97cm$, weight: $61.44{\pm}11.27kg$) participated in this study. The experiment consisted of three blocks: 1) maximal voluntary contraction (MVC) task, 2) single-finger ramp task to quantify enslaving (i.e., unintended force production by non-task fingers), and 3) 12 trials of multi-finger steady-state force production task at 20% MVC. There were three temperature conditions including body-temperature (i.e., control condition), $40^{\circ}C$, and $43^{\circ}C$, and the stimulation was given to the index finger only for all experimental conditions. Results: There were no significant differences in the MVC forces, enslaving, and the accuracy of performance during the steady-state task between the conditions. However, the share of stimulated index finger force increased with the index fingertip temperature, while the share of middle finger force decreased. Also, the coefficient of variation of both index and middle finger forces over repetitive trials increased with the index fingertip temperature. Under the framework of the uncontrolled manifold (UCM) hypothesis used to quantify indices of multi-finger synergies (i.e., stability property) stabilizing total force during the steady-state task, the two variance components within the UCM analysis increased together with the fingertip temperature, while no changes in the synergy indices between the conditions. Conclusion: The current results showed that fingertip temperature stimulation only to index finger does not affect to muscle force production capability of multi-finger, independence of individual fingers, and force production accuracy by the involvement of all four fingers. The effect of fingertip temperature on the sharing pattern and force variation may be due to diffuse reflex effects of the induced afferent activity on alpha-motoneuronal pools. However, the unchanged stability properties may be the reflection of the active error compensation strategies by non-stimulated finger actions.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼