RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        PROTECTION SEQUENCE OF AC/DC CONVERTERS FOR ITER PF MAGNET COILS

        Oh, Byung-Hoon,Hwang, Churl-Kew,Lee, Kwang-Wang,Jin, Jeong-Tae,Chang, Dae-Sik,Oh, Jong-Seok,Choi, Jung-Wan,Suh, Jae-Hak,Tao, Jun,Song, In-Ho Korean Nuclear Society 2010 Nuclear Engineering and Technology Vol.42 No.3

        The protection sequence of an AC/DC converter for an ITER PF coil system is developed in this study. Possible faults in the coil system are simulated and the results reflected in the design of a sequence to protect the coil and converter. The inductances of the current sharing reactors and thyristor numbers in parallel with the bridge arms are optimized with the designed protection sequence.

      • SCIESCOPUSKCI등재
      • KCI등재

        기하광학 반복적용에 의한 회절파 계산

        황철규,김세윤,나정웅,Hwang, Churl-Kew,Kim, Se-Yun,Ra, Jung-Woong 대한전자공학회 1989 전자공학회논문지 Vol. No.

        기하 광학(GO)의 반복에 의한 회절파 계산을 제안하였다. 쐐기형 산란체에 전원이 주어졌을때, 그 GO해는 반공간 문제의 해에 명암 경계를 결정하여 얻어진다. 또한, 이러한 GO해의 명암경계를 따라 나타나는 불연소계와 등가인 전원을 계산하여 이를 그 전원으로 하는 새로운 쐐기문제를 생각할 수 있다. 이때, 이 등가전원 문제의 해가 바로 GO해가 필료로 하는 회절파와 같음을 보였다. 또한, 등가전원이 무한공간에서 만드는 파 즉 새로운 쐐기문제이 입사파는 물리광학으로 계산한 회절파와 같은 것임을 보였다. 새로운 쐐기문제에 다시 GO를 적용하여 회절파에 대한 하나의 근사해를 얻었으며 이것을 물리광학에 의한 것과 비교하였다. 또한, 이와 같은 GO반복 적용의 타당성을 보기 위하여 정확한 해가 이미알려져 있는 완전도체쐐기의 GO무한 반복해를 구하여 그 수렴여부를 살폈다. Successive iteration of geometrical optics(GO)is suggested to calculate wedge diffraction fields. For a wedge and given source, the GO field may be obtained when the fields by the half spaces are found and the shadow regions are determined. Furthermore, one may caluculate the sources which are equivalent to the discontinuities of the GO field along the shadow boundaries and form a new wedge problem with the equivalent sources instead of the original one. It is shown that the field by the wedge and the equivalent sources equals to the diffraction field which GO requires for the complete solution. Also, it is shown that the field generated by the equivalent sources in the unbounded space, or the incident field in the new wedge problem, equls to the diffraction field approximated by the physical optics. The new wedge problem is solved here by another application of the GO to approximate the diffraction field and the result is compared with that by the physical optics. For a validity of the successive iteration of GO , infinite iteration of GO is performed analytically and the convergence is examined ofr conducting wedges, of which the exact solution is available.

      • KCI등재

        DISTRIBUTED CONTROL SYSTEM FOR KSTAR ICRF HEATING

        SONJONG WANG,JONG-GU KWAK,YOUNG-DUG BAE,SUNG KYU KIM,CHURL KEW HWANG 한국원자력학회 2009 Nuclear Engineering and Technology Vol.41 No.6

        An ICRF discharge cleaning and a fast wave electron heating experiment were performed. For automated operation and providing the diagnostics of the ICRF system, the ICRF local network was designed and implemented. This internal network provides monitoring, RF protection, remote control, and RF diagnostics. All the functions of the control system were realized by customized DSP units. The DSP units were tied by a local network in parallel. Owing to the distributed feature of the control system, the ICRF local control system is quite flexible to maintain. Developing the subsystem is a more effective approach compared to developing a large controller that governs the entire system. During the first experimental campaign of the KSTAR tokamak, the control system operated as expected without any major problems that would affect the tokamak operation. The transmitter was protected from harmful over-voltage events through reliable operation of the system.

      • SCIESCOPUSKCI등재

        DISTRIBUTED CONTROL SYSTEM FOR KSTAR ICRF HEATING

        Wang, Son-Jong,Kwak, Jong-Gu,Bae, Young-Dug,Kim, Sung-Kyu,Hwang, Churl-Kew Korean Nuclear Society 2009 Nuclear Engineering and Technology Vol.41 No.6

        An ICRF discharge cleaning and a fast wave electron heating experiment were performed. For automated operation and providing the diagnostics of the ICRF system, the ICRF local network was designed and implemented. This internal network provides monitoring, RF protection, remote control, and RF diagnostics. All the functions of the control system were realized by customized DSP units. The DSP units were tied by a local network in parallel. Owing to the distributed feature of the control system, the ICRF local control system is quite flexible to maintain. Developing the subsystem is a more effective approach compared to developing a large controller that governs the entire system. During the first experimental campaign of the KSTAR tokamak, the control system operated as expected without any major problems that would affect the tokamak operation. The transmitter was protected from harmful over-voltage events through reliable operation of the system.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼