RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Enhancement of Phenolic Compounds Oxidation Using Laccase from Trametes versicolor in a Microreactor

        Ana Jurinjak Tušek,Marina Tišma,Valentina Bregovic,Ana Pticar,Želimir Kurtanjek,Bruno Zelic 한국생물공학회 2013 Biotechnology and Bioprocess Engineering Vol.18 No.4

        Laccases catalyse the oxidation of a wide range of substrates by a radical-catalyzed reaction mechanism,with a corresponding reduction of oxygen to water in a four-electron transfer process. Due to that, laccases are considered environmentally friendly enzymes, and lately there has been great interest in their use for the transformation and degradation of phenolic compounds. In this work, enzymatic oxidation of catechol and L-DOPA using commercial laccase from Trametes versicolor was performed, in continuously operated microreactors. The main focus of this investigation was to develop a new process for phenolic compounds oxidation, by application of microreactors. For a residence time of 72 s and an inlet oxygen concentration of 0.271 mmol/dm3, catechol conversion of 41.3% was achieved, while approximately the same conversion of L-DOPA (45.0%) was achieved for an inlet oxygen concentration of 0.544 mmol/dm3. The efficiency of microreactor usage for phenolic compounds oxidation was confirmed by calculating the oxidation rates;in the case of catechol oxidation, oxidation rates were in the range from 76.101 to 703.935 g/dm3/d (18 - 167 fold higher, compared to the case in a macroreactor). To better describe the proposed process, kinetic parameters of catechol oxidation were estimated, using data collected from experiments performed in a microreactor. The maximum reaction rate estimated in microreactor experiments was two times higher than one estimated using the initial reaction rate method from experiments performed in a cuvette. A mathematical model of the process was developed, and validated, using data from independent experiments.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼