RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUS

        Cryopreservation of Human Wharton’s Jelly-derived Mesenchymal Stem Cells Following Controlled Rate Freezing Protocol Using Different Cryoprotectants; A Comparative Study

        Shivakumar, Sharath Belame,Bharti, Dinesh,Jang, Si-Jung,Hwang, Sun-Chul,Park, Ji-Kwon,Shin, Jeong-Kyu,Byun, June-Ho,Park, Bong-Wook,Rho, Gyu-Jin Korean Society for Stem Cell Research 2015 International journal of stem cells Vol.8 No.2

        <P><B>Objectives</B></P><P>To compare the effect of three different cryoprotectants on basic stem cell characteristics for the possibility of using well defined, dimethyl sulfoxide (DMSO) and serum free freezing solutions to cryopreserve human Wharton’s jelly-derived mesenchymal stem cells (WJMSCs) following controlled rate freezing protocol.</P><P><B>Methods</B></P><P>The mesenchymal stem cells isolated from human Wharton’s jelly were cryopreserved using 10% DMSO, 10% polyvinylpyrrolidone (PVP) and a cocktail solution comprising of 0.05 M glucose, 0.05 M sucrose and 1.5 M ethylene glycol following controlled rate freezing protocol. We investigated the post-thaw cell viability, morphology, proliferation capacity, basic stem cell characteristics, in vitro differentiation potential and apoptosis-related gene expression profile before and after cryopreservation.</P><P><B>Results</B></P><P>The cryoprotectant 10% DMSO has shown higher post-thaw cell viability of 81.2±0.58% whereas 10% PVP and cocktail solution have shown 62.87±0.35% and 72.2±0.23%, respectively at 0 h immediately thawing. The cell viability was further reduced in all the cryopreserved groups at 24 h later post-thaw culture. Further, the complete elimination of FBS in cryoprotectants has resulted in drastic reduction in cell viability. Cryopreservation did not alter the basic stem cell characteristics, plasticity and multipotency except proliferation rate. The expression of pro-apoptotic <I>BAX</I> and <I>p53</I> genes were higher whilst <I>p21</I> was lower in all the cryopreserved groups when compare to the control group of WJMSCs.</P><P><B>Conclusion</B></P><P>Although 10% DMSO has shown higher post-thaw cell viability compare to 10% PVP and cocktail solution, the present study indicates the feasibility of developing a well-defined DMSO free cryosolution which can improve storage and future broad range applications of WJMSCs in regenerative medicine without losing their basic stem cell characteristics.</P>

      • DMSO‐ and Serum‐Free Cryopreservation of Wharton's Jelly Tissue Isolated From Human Umbilical Cord

        Shivakumar, Sharath Belame,Bharti, Dinesh,Subbarao, Raghavendra Baregundi,Jang, Si‐,Jung,Park, Ji‐,Sung,Ullah, Imran,Park, Ji‐,Kwon,Byun, June‐,Ho,Park, Bong‐,Wook,Rho, G John Wiley and Sons Inc. 2016 Journal of cellular biochemistry Vol.117 No.10

        <P><B>ABSTRACT</B></P><P>The facile nature of mesenchymal stem cell (MSC) acquisition in relatively large numbers has made Wharton's jelly (WJ) tissue an alternative source of MSCs for regenerative medicine. However, freezing of such tissue using dimethyl sulfoxide (DMSO) for future use impedes its clinical utility. In this study, we compared the effect of two different cryoprotectants (DMSO and cocktail solution) on post‐thaw cell behavior upon freezing of WJ tissue following two different freezing protocols (Conventional [−1°C/min] and programmed). The programmed method showed higher cell survival rate compared to conventional method of freezing. Further, cocktail solution showed better cryoprotection than DMSO. Post‐thaw growth characteristics and stem cell behavior of Wharton's jelly mesenchymal stem cells (WJMSCs) from WJ tissue cryopreserved with a cocktail solution in conjunction with programmed method (Prog‐Cock) were comparable with WJMSCs from fresh WJ tissue. They preserved their expression of surface markers, pluripotent factors, and successfully differentiated in vitro into osteocytes, adipocytes, chondrocytes, and hepatocytes. They also produced lesser annexin‐V‐positive cells compared to cells from WJ tissue stored using cocktail solution in conjunction with the conventional method (Conv‐Cock). Real‐time PCR and Western blot analysis of post‐thaw WJMSCs from Conv‐Cock group showed significantly increased expression of pro‐apoptotic factors (BAX, p53, and p21) and reduced expression of anti‐apoptotic factor (BCL2) compared to WJMSCs from the fresh and Prog‐Cock group. Therefore, we conclude that freezing of fresh WJ tissue using cocktail solution in conjunction with programmed freezing method allows for an efficient WJ tissue banking for future MSC‐based regenerative therapies. J. Cell. Biochem. 117: 2397–2412, 2016. © 2016 The Authors. <I>Journal of Cellular Biochemistry</I> published by Wiley Periodicals, Inc.</P>

      • KCI등재

        Comparative analysis of three different protocols for cholinergic neuron differentiation in vitro using mesenchymal stem cells from human dental pulp

        강영훈,Sharath Belame Shivakumar,손영범,Dinesh Bharti,장시정,허강선,박원욱,변준호,박봉욱,노규진 한국통합생물학회 2019 Animal cells and systems Vol.23 No.4

        A decrease in the activity of choline acetyltransferase, the enzyme responsible for acetylcholine synthesis in the cholinergic neurons cause neurological disorders involving a decline in cognitive abilities, such as Alzheimer’s disease. Mesenchymal stem cells (MSCs) can be used as an efficient therapeutic agents due to their neuronal differentiation potential. Different source derived MSCs may have different differentiation potential under different inductions. Various in vitro protocols have been developed to differentiate MSCs into specific neurons but the comparative effect of different protocols utilizing same source derived MSCs, is not known. To address this issue, dental pulp derived MSCs (DPSCs) were differentiated into cholinergic neurons using three different protocols. In protocol I, DPSCs were pre-induced with serum-free ADMEM containing 1 mM of β-mercaptoethanol for 24 h and then incubated with 100 ng/ml nerve growth factor (NGF) for 6 days. Under protocol II, DPSCs were cultured in serum-free ADMEM containing 15 μg/ ml of D609 (tricyclodecan-9-yl-xanthogenate) for 4 days. Under protocol III, the DPSCs were cultured in serum-free ADMEM containing 10 ng/ml of basic fibroblast growth factor (bFGF), 50 μM of forskolin, 250 ng/ml of sonic hedgehog (SHH), and 0.5 μM of retinoic acid (RA) for 7 days. The DPSCs were successfully trans-differentiated under all the protocols, exhibited neuronlike morphologies with upregulated cholinergic neuron-specific markers such as ChAT, HB9, ISL1, BETA-3, and MAP2 both at mRNA and protein levels in comparison to untreated cells. However, protocol III-induced cells showed the highest expression of the cholinergic markers and secreted the highest level of acetylcholine.

      • Research Advancements in Porcine Derived Mesenchymal Stem Cells

        Bharti, Dinesh,Shivakumar, Sharath Belame,Subbarao, Raghavendra Baregundi,Rho, Gyu-Jin Bentham Science Publishers 2016 Current stem cell research & therapy Vol.11 No.1

        <P>In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs) before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for <I>in vitro</I> studies and preclinical assessments. Easy assessability, few ethical issues, successful MSC isolation from different origins like bone marrow, skin, umbilical cord blood, Wharton’s jelly, endometrium, amniotic fluid and peripheral blood make porcine a good model for stem cell therapy. Porcine derived MSCs (pMSCs) have shown greater <I>in vitro</I> differentiation and transdifferention potential towards mesenchymal lineages and specialized lineages such as cardiomyocytes, neurons, hepatocytes and pancreatic beta cells. Immunomodulatory and low immunogenic profiles as shown by autologous and heterologous MSCs proves them safe and appropriate models for xenotransplantation purposes. Furthermore, tissue engineered stem cell constructs can be of immense importance in relation to various osteochondral defects which are difficult to treat otherwise. Using pMSCs successful treatment of various disorders like Parkinson’s disease, cardiac ischemia, hepatic failure, has been reported by many studies. Here, in this review we highlight current research findings in the area of porcine mesenchymal stem cells dealing with their isolation methods, differentiation ability, transplantation applications and their therapeutic potential towards various diseases.</P>

      • SCISCIESCOPUS

        Comparative analysis of human Wharton’s jelly mesenchymal stem cells derived from different parts of the same umbilical cord

        Bharti, Dinesh,Shivakumar, Sharath Belame,Park, Ji-Kwon,Ullah, Imran,Subbarao, Raghavendra Baregundi,Park, Ji-Sung,Lee, Sung-Lim,Park, Bong-Wook,Rho, Gyu-Jin Springer Berlin Heidelberg 2018 Cell and tissue research Vol.372 No.1

        <P>Easy isolation, lack of ethical issues, high proliferation, multi-lineage differentiation potential and immunomodulatory properties of umbilical cord (UC)-derived mesenchymal stem cells (MSCs) make them a valuable tool in stem cell research. Recently, Wharton’s jelly (WJ) was proven as the best MSC source among various compartments of UC. However, it is still unclear whether or not Wharton’s jelly-derived MSCs (WJMSCs) from different parts of the whole cord exhibit the same characteristics. There may be varied MSCs present in different parts of WJ throughout the length of the UC. For this purpose, using an explant attachment method, WJMSCs were isolated from three different parts of the UC, mainly present towards the placenta (mother part), the center of the whole cord (central part) and the part attached to the fetus (baby part). WJMSCs from all three parts were maintained in normal growth conditions (10% ADMEM) and analyzed for mesenchymal markers, pluripotent genes, proliferation rate and tri-lineage differentiation potential. All WJMSCs were highly proliferative, positively expressed CD90, CD105, CD73 and vimentin, while not expressing CD34, CD45, CD14, CD19 or HLA-DR, differentiated into adipocytes, osteocytes and chondrocytes and expressed pluripotency markers OCT-4, SOX-2 and NANOG at gene and protein levels. Furthermore, MSCs derived from all the parts were shown to have potency towards hepatocyte-like cell differentiation. Human bone marrow-derived MSCs were used as a positive control. Finally, we conclude that WJMSCs derived from all the parts are valuable sources and can be efficiently used in various fields of regenerative medicine.</P><P><B>Electronic supplementary material</B></P><P>The online version of this article (10.1007/s00441-017-2699-4) contains supplementary material, which is available to authorized users.</P>

      • KCI등재

        Inhibition of cell growth by cellular differentiation into adipocyte-like cells in dexamethasone sensitive cancer cell lines

        김해인,문선하,이원철,이현정,Sharath Belame Shivakumar,이성호,박봉욱,노규진,전병균 한국통합생물학회 2018 Animal cells and systems Vol.22 No.3

        The stress responses in human body lead to secretion of cortisol hormone. The present study investigated the cellular responses on cell growth and cellular differentiation into adipocytes by exposure of synthetic stress hormone, dexamethasone (DEX) in various human cancer and normal cells. After prolonged exposure of cells with 1 μg/ml DEX for 2 weeks, population doubling time (PDT) was significantly (P < .05) increased by inhibited cell growth in A-549 and MCF-7 cancer cells, and was unchanged in MDA-MB-231 cancer cells, normal MRC-5 fibroblasts, umbilical cord matrix-derived mesenchymal stem cells (UCMSCs) and dental papilla tissuederived mesenchymal stem cells (DSCs). Whereas, PDT was significantly (P < .05) decreased in U87-MG cancer cells by increased cell growth. Glucose uptake was significantly (P < .05) increased in all the cancer cell lines compared to that in normal cell lines. Further, adiposomelike vesicles were noted in A-549 and MCF-7 cancer cells indicating retarded cell growth by DEX treatment, and the vesicles were stained with Oil-Red O solution. Further, the expression of adipocyte-specific genes such as glucose transporter type 4 (GLUT4), glucocorticoid receptors β (GRβ) and peroxisome proliferator-activated receptor γ (PPARγ) were significantly (P < .05) increased in A-549 and MCF-7 with lipid vesicles. The level of telomerase activity was found to be significantly (P < .05) downregulated in DEX-treated A-549 and MCF-7 cancer cells. Our results have clearly shown that DEX treatment induces inhibition of cell growth by differentiating into adipocyte-like cells in dexamethasone sensitive cancer cells.

      • KCI등재

        Induction of telomere shortening and cellular apoptosis by sodium meta-arsenite in human cancer cell lines

        김윤동,전병균,장시정,임은지,하정숙,Sharath Belame Shivakumar,정계준,노규진 한국통합생물학회 2017 Animal cells and systems Vol.21 No.4

        The present study assessed the cytotoxicity of sodium meta-arsenite (SMA) on telomere shortening and cellular apoptosis in human A-549, MDA-MB-231 and U87-MG cancer cell lines. Following 2 weeks of 1 μM SMA treatment, population doubling time (PDT) was significantly (P < .05) increased by the inhibition of cell proliferation in all the cancer cell lines compared to that in untreated controls. Level of telomerase activity by relative-quantitative telomerase repeat amplification protocol was significantly (P < .05) downregulated by SMA treatment with significant (P < .05) decrease of both telomerase reverse transcriptase and telomerase RNA component transcripts, responsible for telomerase activity. A significant (P < .05) shortening of telomeric repeats by telomere restriction fragment analysis was consequently observed in SMAtreated cells. Moreover, high incidence of cells with senescence-associated β-glucosidase activity was observed in SMA-treated cells and some cells were also differentiated into adipocytes probably due to the loss of tumorous characterizations. Cellular apoptosis proven by DNA fragmentation was observed, and intrinsic apoptotic transcripts (BAX, caspase 3 and caspase 9) and stress-related transcripts (p21, HSP70 and HSP90) were significantly (P < .05) increased in three cancer cell lines treated with SMA. Based on the present study, SMA treatment apparently induced a shortening of telomere length and cytotoxicity, such as induction of cell senescence, apoptosis and cell differentiation. Therefore, we conclude that SMA treatment at specific concentration can lead to gradual loss of tumorous characterizations and can be considered as a potential anti-cancer drug for chemotherapy treatment.

      • SCISCIESCOPUS

        Evaluation of phenotypic, functional and molecular characteristics of porcine mesenchymal stromal/stem cells depending on donor age, gender and tissue source

        OCK, Sun-A,LEE, Yeon-Mi,PARK, Ji-Sung,SHIVAKUMAR, Sharath Belame,MOON, Seon-Woung,SUNG, Nak-Ju,LEE, Won-Jae,JANG, Si-Jung,PARK, Ju-Mi,LEE, Seung-Chan,LEE, Sung-Lim,RHO, Gyu-Jin JAPANESE SOCIETY OF VETERINARY SCIENCE 2016 The Journal of veterinary medical science Vol.78 No.6

        <P>The biological properties of mesenchymal stem cells (MSCs) are influenced by donor age, gender and/or tissue sources. The present study investigated the cellular and molecular properties of porcine mesenchymal stromal/stem cells <B>(</B>MSCs) isolated from different tissues (adipose & dermal skin) and sex at different ages (1 week & 8 months after birth) with similar genetic and environmental backgrounds. MSCs were analyzed for alkaline phosphatase (AP) activity, CD90 and Oct3/4 expression, <I>in vitro</I> differentiation ability, senescence-associated <I>β</I>-galactosidase (SA-<I>β</I>-Gal) activity, telomeric properties, cell cycle status and expression of senescence (IL6, c-myc, TGFβ, p53 and p21)- and apoptosis (Bak and Bcl2)-related proteins. An age-dependent decline in AP activity and adipogenesis was observed in all MSCs, except for male A-MSCs. CD90 expression did not change, but SA<I>-β</I>-Gal activity increased with advancement in age, except in A-MSCs. Telomeric properties were similar in all MSCs, whereas expression levels of Oct3/4 protein declined with the advancement in age. p21 expression was increased with increase in donor age. Male derived cells have shown higher IL6 expression. The expression of p53 was slightly lower in MSCs of dermal tissue than in adipose tissue. Bak was expressed in all MSCs regardless of age, but up regulation of Bcl2 was observed in DS-MSCs derived at 1 week after birth. In conclusion, adipose tissue-derived MSCs from young female individuals were found to be more resistant to senescence under <I>in vitro</I> culture conditions.</P>

      • Cholinergic Nerve Differentiation of Mesenchymal Stem Cells Derived from Long-Term Cryopreserved Human Dental Pulp In Vitro and Analysis of Their Motor Nerve Regeneration Potential In Vivo

        Jang, Soomi,Kang, Young-Hoon,Ullah, Imran,Shivakumar, Sharath Belame,Rho, Gyu-Jin,Cho, Yeong-Cheol,Sung, Iel-Yong,Park, Bong-Wook MDPI 2018 INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES Vol.19 No.8

        <P>The reduction of choline acetyltransferase, caused by the loss of cholinergic neurons, leads to the absence of acetylcholine (Ach), which is related to motor nerve degeneration. The aims of the present study were to evaluate the in vitro cholinergic nerve differentiation potential of mesenchymal stem cells from cryopreserved human dental pulp (hDPSCs-cryo) and to analyze the scale of in vivo motor nerve regeneration. The hDPSCs-cryo were isolated and cultured from cryopreserved dental pulp tissues, and thereafter differentiated into cholinergic neurons using tricyclodecane-9-yl-xanthogenate (D609). Differentiated cholinergic neurons (DF-chN) were transplanted into rats to address sciatic nerve defects, and the scale of in vivo motor nerve regeneration was analyzed. During in vitro differentiation, the cells showed neuron-like morphological changes including axonal fibers and neuron body development, and revealed high expression of cholinergic neuron-specific markers at both the messenger RNA (mRNA) and protein levels. Importantly, DF-chN showed significant Ach secretion ability. At eight weeks after DF-chN transplantation in rats with sciatic nerve defects, notably increased behavioral activities were detected with an open-field test, with enhanced low-affinity nerve growth factor receptor (p75NGFR) expression detected using immunohistochemistry. These results demonstrate that stem cells from cryopreserved dental pulp can successfully differentiate into cholinergic neurons in vitro and enhance motor nerve regeneration when transplanted in vivo. Additionally, this study suggests that long-term preservation of dental pulp tissue is worthwhile for use as an autologous cell resource in the field of nerve regeneration, including cholinergic nerves.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼