RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Research on PSA-MFAC for a novel bionic elbow joint system actuated by pneumatic artificial muscles

        Hui Yang,Chaoqun Xiang,Lina Hao,Liangliang Zhao,Bangcan Xue 대한기계학회 2017 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.31 No.7

        A 3-DOF bionic elbow joint actuated by Pneumatic artificial muscle (PAM) was designed in this paper, and its inverse kinematics model was also established. Then, based on the Model-free adaptive control (MFAC) theory and the effects of control parameters to the control system, a Parameter self-adjust Model-free adaptive control (PSA-MFAC) strategy was proposed, and its adaptability for different control objects was also tested in simulation environment. Combined with the inverse kinematics model, motion control experiments of the bionic elbow joint were conducted in semi-physical platform. Compared with conventional MFAC and PID control algorithm, the experiment results strongly verified the improvement of PSA-MFAC control accuracy. The tracking accuracy of conventional MFAC and PID controller were 9.5 % and 15 %, respectively, in contrast, the PSA-MFAC controller was only 3.8 %. Moreover, complex dynamics modelling of the elbow joint and adjusting process of control parameters were neglected in PSA-MFAC control system.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼