RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Glucose recovery from different corn stover fractions using dilute acid and alkaline pretreatment techniques

        Aboagye, D.,Banadda, N.,Kambugu, R.,Seay, J.,Kiggundu, N.,Zziwa, A.,Kabenge, I. The Ecological Society of Korea 2017 Journal of Ecology and Environment Vol.41 No.7

        Background: Limited availability of corn stover due to the competing uses (organic manure, animal feed, bio-materials, and bioenergy) presents a major concern for its future in the bio-economy. Furthermore, biomass research has exhibited different results due to the differences in the supply of enzymes and dissimilar analytical methods. The effect of the two leading pretreatment techniques (dilute acid and alkaline) on glucose yield from three corn stover fractions (cob, stalk, and leaf) sourced from a single harvest in Uganda were studied at temperatures 100, 120, 140, and $160^{\circ}C$ over reaction times of 5, 10, 30, and 60 min. Results: From this study, the highest glucose concentrations obtained from the dilute acid (DA) pretreated cobs, stalks, and leaves were 18.4 g/L (66.8% glucose yield), 16.2 g/L (64.1% glucose yield), and 11.0 g/L (49.5% glucose yield), respectively. The optimal pretreatment settings needed to obtain these yields from the DA pretreated samples were at a temperature of $160^{\circ}C$ over an incubation time of 30 min. The highest glucose concentrations obtained from the alkaline (AL) pretreated cobs, stalks, and leaves were 24.7 g/L (81.73% glucose yield), 21.3 g/L (81.23% glucose yield), and 15.0 g/L (51.92% glucose yield), respectively. To be able to achieve these yields, the optimal pretreatment settings for the cobs and stalks were $140^{\circ}C$ and for a retention time of 30 min, while the leaves require optimal conditions of $140^{\circ}C$ and for a retention time of 60 min. Conclusions: The study recommends that the leaves could be left on the field during harvesting since the recovery of glucose from the pretreated cobs and stalks is higher.

      • KCI등재

        Glucose recovery from different corn stover fractions using dilute acid and alkaline pretreatment techniques

        D. Aboagye,N. Banadda,R. Kambugu,J. Seay,N. Kiggundu,A. Zziwa,I. Kabenge 한국생태학회 2017 Journal of Ecology and Environment Vol.41 No.7

        Background: Limited availability of corn stover due to the competing uses (organic manure, animal feed, bio-materials, and bioenergy) presents a major concern for its future in the bio-economy. Furthermore, biomass research has exhibited different results due to the differences in the supply of enzymes and dissimilar analytical methods. The effect of the two leading pretreatment techniques (dilute acid and alkaline) on glucose yield from three corn stover fractions (cob, stalk, and leaf) sourced from a single harvest in Uganda were studied at temperatures 100, 120, 140, and 160 °C over reaction times of 5, 10, 30, and 60 min. Results: From this study, the highest glucose concentrations obtained from the dilute acid (DA) pretreated cobs, stalks, and leaves were 18.4 g/L (66.8% glucose yield), 16.2 g/L (64.1% glucose yield), and 11.0 g/L (49.5% glucose yield), respectively. The optimal pretreatment settings needed to obtain these yields from the DA pretreated samples were at a temperature of 160 °C over an incubation time of 30 min. The highest glucose concentrations obtained from the alkaline (AL) pretreated cobs, stalks, and leaves were 24.7 g/L (81.73% glucose yield), 21.3 g/L (81.23% glucose yield), and 15.0 g/L (51.92% glucose yield), respectively. To be able to achieve these yields, the optimal pretreatment settings for the cobs and stalks were 140 °C and for a retention time of 30 min, while the leaves require optimal conditions of 140 °C and for a retention time of 60 min. Conclusions: The study recommends that the leaves could be left on the field during harvesting since the recovery of glucose from the pretreated cobs and stalks is higher.

      • KCI등재

        Immunosensors for Food Safety: Current Trends and Future Perspectives

        Frank Daliri,Agnes Achiaa Aboagye,Vincent Kyei-Baffour,ELAHI MD FAZLE,CHELLIAH RAMACHANDRAN,Eric Banan-Mwine Daliri 한국식품위생안전성학회 2019 한국식품위생안전성학회지 Vol.34 No.6

        To monitor the levels of antimicrobials, allergens, pathogens and other contaminants in foods meant for human consumption, it is imperative to have quick, accurate and low-cost tests. Advanced techniques (e.g. label-free biosensor assays) have been developed over the past 10?15 years to solve some of these problems. As biosensors, immunosensors can provide real-time measurements, a high degree of automation, and improved throughput and sensitivity. By comparison with conventional methods, immunosensors are less expensive, less sophisticated physicochemical instruments that require less time for analysis while also being more user-friendly. In this review, we discuss our current knowledge about immunosensors, their strengths and weaknesses, as well as the future of these biosensors in food safety.

      • KCI등재

        Inactivation of Foodborne Pathogens by Lactic Acid Bacteria

        Frank Daliri,Agnes Achiaa Aboagye,Eric Banan-Mwine Daliri 한국식품위생안전성학회 2020 한국식품위생안전성학회지 Vol.35 No.5

        The problems caused by foodborne pathogens are not only a concern to the food industry but also with regard to global public health. Over the years, fermentation technology has proved to be one of the cheapest and safest methods for inactivating and controlling pathogenic microorganisms in food. Scientific evidence shows that lactic acid bacteria fermentation exerts significant antimicrobial effect against pathogenic bacteria and viruses. Lactic acid bacteria metabolites such as organic acids, bacteriocins and hydrogen peroxides have adverse effects on foodborne pathogens which lead to their inhibition. These compounds do not only cause physical injuries, but also have significant effects on the pathogens' gene expression. Furthermore, the presence of lactic acid bacteria in food provides nutritional competition among foodborne pathogens, and all these factors together suppress their growth. This study reviews our current knowledge of the antimicrobial abilities of lactic acid bacteria, their molecular mechanisms, and their application for inactivating foodborne pathogens.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼