RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • A novel mode of TRPML3 regulation by extracytosolic pH absent in the varitint-waddler phenotype

        Kim, Hyun Jin,Li, Qin,Tjon-Kon-Sang, Sandra,So, Insuk,Kiselyov, Kirill,Soyombo, Abigail A,Muallem, Shmuel Wiley (John WileySons) 2008 The EMBO journal Vol.27 No.8

        <P>TRPML3 belongs to the TRPML subfamily of the transient receptor potential (TRP) channels. The A419P mutation in TRPML3 causes the varitint-waddler phenotype as a result of gain-of-function mutation (GOF). Regulation of the channels and the mechanism by which the A419P mutation leads to GOF are not known. We report here that TRPML3 is a Ca(2+)-permeable channel with a unique form of regulation by extracytosolic (luminal) H(+) (H(+)(e-cyto)). Regulation by H(+)(e-cyto) is mediated by a string of three histidines (H252, H273, H283) in the large extracytosolic loop between transmembrane domains (TMD) 1 and 2. Each of the histidines has a unique role, whereby H252 and H273 retard access of H(+)(e-cyto) to the inhibitory H283. Notably, the H283A mutation has the same phenotype as A419P and locks the channel in an open state, whereas the H283R mutation inactivates the channel. Accordingly, A419P eliminates regulation of TRPML3 by H(+)(e-cyto), and confers full activation to TRPML3(H283R). Activation of TRPML3 and regulation by H(+)(e-cyto) are altered by both the alpha-helix-destabilizing A419G and the alpha-helix-favouring A419M and A419K. These findings suggest that regulation of TRPML3 by H(+)(e-cyto) is due to an effect of the large extracytosolic loop on the orientation of fifth TMD and thus pore opening and show that the GOF of TRPML3(A419P) is due to disruption of this communication.</P>

      • KCI등재

        Hybrid Photoactive Nanomaterial Composed of Gold Nanoparticles, Pheophorbide-A and Hyaluronic Acid as a Targeted Bimodal Phototherapy

        강성훈,이용규,Md Nafiujjaman,Md. Nurunnabi,Li Li,Haseeb A. Khan,조광재,허강무 한국고분자학회 2015 Macromolecular Research Vol.23 No.5

        Modern cancer research is largely focused on the design and development of multifunctional nanomaterials for cancer therapy and diagnosis. In this study, we fabricated a theranostic nanomaterial known as a photomedicine that combines a photothermal therapy (PTT), gold nanoparticles (AuNPs), a photodynamic therapy (PDT), pheophorbide- A (PheoA), and a cancer-targeting agent, hyaluronic acid (HA); this photomedicine also acts as a bimodal phototherapy. The combination of AuNPs and PheoA exerts a synergistic effect on PTT and PDT when irradiated by a laser source with a specific excitation wavelength. When excited by an external laser source, the hybrid nanomedicine generates singlet oxygen from PheoA while simultaneously generating heat from the AuNP, thus demonstrating a higher efficacy than any of the individual agents. The presence of HA on the outer surface of the Au accelerates the cellular uptake of the nanomedicine through CD44 receptors and prevents nonspecific accumulation of the drug in non-cancerous cells. The multifunctional nanoparticles have a diameter of ~70 nm and show constant stability in different conditions for up to a week of observation. In vitro and in vivo studies have demonstrated that multifunctional nanomaterials selectively target cells overexpressing CD44 receptor. In vitro photo-activity assays in the lung cancer cell line (A549) show that over 95% of the cells were dead upon laser irradiation. In brief, this newly developed nanomaterial rapidly accumulates in the tumor within 3 h of IV administration and inhibits tumor growth by 95% upon laser irradiation compared with a saline-treated tumor model observed for 24 days.

      • KCI등재

        The Effects of Injectable Platelet-Rich Fibrin and Advanced-Platelet Rich Fibrin on Gingival Fibroblast Cell Vitality, Proliferation, Differentiation

        Ashour Sarraj H.,Mudalal Mahmoud,Al-Aroomi Omar A.,Al-Attab Reem,Li Wanxin,Yin Lihua 한국조직공학과 재생의학회 2023 조직공학과 재생의학 Vol.20 No.7

        BACKGROUND: Injectable Platelet Rich Fibrin (I-PRF) and Advanced-Platelet Rich Fibrin (A-PRF) are autologous materials derived from patients’ blood and employed in periodontal regenerative surgery. Although I-PRF and A-PRF have different characteristics, their biological effects on gingival tissue fibroblasts remain unclear. This research aims to compare the in vitro capacity in inducing gene expression and proliferation of human gingival fibroblasts between A-PRF and I-PRF. METHODS: Human donors undergoing dental implant surgery were sampled for normal human gingival fibroblasts (NHGFCs), followed by preparing A-PRF and I-PRF membranes. Enzyme-linked immunosorbent assay (ELISA) kit was used to assess the release of platelet-derived growth factor-AA (PDGF-AA), transforming growth factor-beta1 (TGF- b1), and insulin growth factor-1 (IGF-1) at different periods. Cell viability and proliferation of A-PRF and I-PRF were compared using CCK-8 assay. The impacts of platelet concentration on human gingival fibroblast cells (HGFCs) were evaluated by quantifying the level or amount of phosphorylated extracellular signal-regulated protein kinase (p-ERK), and Matrix metalloproteinases (MMPs), MMP-1 and MMP-3. The effects of PRF on aged human gingival fibroblast cells were examined retrospectively. RESULTS: Overall, A-PRF demonstrated a higher release of TGF-B1 and PDGF-AA, while I-PRF reflected higher levels of IGF-1. A significantly higher level of cell proliferation was induced by higher cell proliferation by A-PRF and I-PRF. Additionally, in comparison to I-PRF, the expression of ERK phosphorylation and MMP-1 &MMP-3 in HGFCs was demonstrated by I-PRF and A-PRF. The increase in A-PRF was time-dependent (p\0.05). CONCLUSION: Both I-PRF and A-PRF induced a stimulatory biological impact on the proliferation of human gingiva fibroblasts, with the latter demonstrating better capacity in facilitating the release of different growth factors. A-PRF also induced higher gene expression of p-ERK, MMP-1 &MMP-3, and the proliferation of fibroblasts.

      • SCIESCOPUS

        Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa

        Li, G. J.,Hyde, K. D.,Zhao, R. L.,Hongsanan, S.,Abdel-Aziz, F. A.,Abdel-Wahab, M. A.,Alvarado, P.,Alves-Silva, G.,Ammirati, J. F.,Ariyawansa, H. A. Springer Science and Business Media 2016 FUNGAL DIVERSITY Vol.78 No.1

        <P>Notes on 113 fungal taxa are compiled in this paper, including 11 new genera, 89 new species, one new subspecies, three new combinations and seven reference specimens. A wide geographic and taxonomic range of fungal taxa are detailed. In the Ascomycota the new genera Angustospora (Testudinaceae), Camporesia (Xylariaceae), Clematidis, Crassiparies (Pleosporales genera incertae sedis), Farasanispora, Longiostiolum (Pleosporales genera incertae sedis), Multilocularia (Parabambusicolaceae), Neophaeocryptopus (Dothideaceae), Parameliola (Pleosporales genera incertae sedis), and Towyspora (Lentitheciaceae) are introduced. Newly introduced species are Angustospora nilensis, Aniptodera aquibella, Annulohypoxylon albidiscum, Astrocystis thailandica, Camporesia sambuci, Clematidis italica, Colletotrichum menispermi, C. quinquefoliae, Comoclathris pimpinellae, Crassiparies quadrisporus, Cytospora salicicola, Diatrype thailandica, Dothiorella rhamni, Durotheca macrostroma, Farasanispora avicenniae, Halorosellinia rhizophorae, Humicola koreana, Hypoxylon lilloi, Kirschsteiniothelia tectonae, Lindgomyces okinawaensis, Longiostiolum tectonae, Lophiostoma pseudoarmatisporum, Moelleriella phukhiaoensis, M. pongdueatensis, Mucoharknessia anthoxanthi, Multilocularia bambusae, Multiseptospora thysanolaenae, Neophaeocryptopus cytisi, Ocellularia arachchigei, O. ratnapurensis, Ochronectria thailandica, Ophiocordyceps karstii, Parameliola acaciae, P. dimocarpi, Parastagonospora cumpignensis, Pseudodidymosphaeria phlei, Polyplosphaeria thailandica, Pseudolachnella brevifusiformis, Psiloglonium macrosporum, Rhabdodiscus albodenticulatus, Rosellinia chiangmaiensis, Saccothecium rubi, Seimatosporium pseudocornii, S. pseudorosae, Sigarispora ononidis and Towyspora aestuari. New combinations are provided for Eutiarosporella dactylidis (sexual morph described and illustrated) and Pseudocamarosporium pini. Descriptions, illustrations and/or reference specimens are designated for Aposphaeria corallinolutea, Cryptovalsa ampelina, Dothiorella vidmadera, Ophiocordyceps formosana, Petrakia echinata, Phragmoporthe conformis and Pseudocamarosporium pini. The new species of Basidiomycota are Agaricus coccyginus, A. luteofibrillosus, Amanita atrobrunnea, A. digitosa, A. gleocystidiosa, A. pyriformis, A. strobilipes, Bondarzewia tibetica, Cortinarius albosericeus, C. badioflavidus, C. dentigratus, C. duboisensis, C. fragrantissimus, C. roseobasilis, C. vinaceobrunneus, C. vinaceogrisescens, C. wahkiacus, Cyanoboletus hymenoglutinosus, Fomitiporia atlantica, F. subtilissima, Ganoderma wuzhishanensis, Inonotus shoreicola, Lactifluus armeniacus, L. ramipilosus, Leccinum indoaurantiacum, Musumecia alpina, M. sardoa, Russula amethystina subp. tengii and R. wangii are introduced. Descriptions, illustrations, notes and / or reference specimens are designated for Clarkeinda trachodes, Dentocorticium ussuricum, Galzinia longibasidia, Lentinus stuppeus and Leptocorticium tenellum. The other new genera, species new combinations are Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis from Neocallimastigomycota, Phytophthora estuarina, P. rhizophorae, Salispina, S. intermedia, S. lobata and S. spinosa from Oomycota, and Absidia stercoraria, Gongronella orasabula, Mortierella calciphila, Mucor caatinguensis, M. koreanus, M. merdicola and Rhizopus koreanus in Zygomycota.</P>

      • SCISCIESCOPUS

        The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers

        Han, L.,Diao, L.,Yu, S.,Xu, X.,Li, J.,Zhang, R.,Yang, Y.,Werner, Henrica M.J.,Eterovic, A.,Yuan, Y.,Li, J.,Nair, N.,Minelli, R.,Tsang, Y.,Cheung, Lydia W.T.,Jeong, K.,Roszik, J.,Ju, Z.,Woodman, Scott Cell Press 2015 CANCER CELL Vol. No.

        Adenosine-to-inosine (A-to-I) RNA editing is a widespread post-transcriptional mechanism, but its genomic landscape and clinical relevance in cancer have not been investigated systematically. We characterized the global A-to-I RNA editing profiles of 6,236 patient samples of 17 cancer types from The Cancer Genome Atlas and revealed a striking diversity of altered RNA-editing patterns in tumors relative to normal tissues. We identified an appreciable number of clinically relevant editing events, many of which are in noncoding regions. We experimentally demonstrated the effects of several cross-tumor nonsynonymous RNA editing events on cell viability and provide the evidence that RNA editing could selectively affect drug sensitivity. These results highlight RNA editing as an exciting theme for investigating cancer mechanisms, biomarkers, and treatments.

      • SCISCIESCOPUS

        Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers

        Wang, Yumeng,Xu, Xiaoyan,Yu, Shuangxing,Jeong, Kang Jin,Zhou, Zhicheng,Han, Leng,Tsang, Yiu Huen,Li, Jun,Chen, Hu,Mangala, Lingegowda S.,Yuan, Yuan,Eterovic, A. Karina,Lu, Yiling,Sood, Anil K.,Scott, Cold Spring Harbor Laboratory Press 2017 Genome research Vol.27 No.7

        <P>RNA editing, a widespread post-transcriptional mechanism, has emerged as a new player in cancer biology. Recent studies have reported key roles for individual miRNA editing events, but a comprehensive picture of miRNA editing in human cancers remains largely unexplored. Here, we systematically characterized the miRNA editing profiles of 8595 samples across 20 cancer types from miRNA sequencing data of The Cancer Genome Atlas and identified 19 adenosine-to-inosine (A-to-I) RNA editing hotspots. We independently validated 15 of them by perturbation experiments in several cancer cell lines. These miRNA editing events show extensive correlations with key clinical variables (e.g., tumor subtype, disease stage, and patient survival time) and other molecular drivers. Focusing on the RNA editing hotspot in miR-200b, a key tumor metastasis suppressor, we found that the miR-200b editing level correlates with patient prognosis opposite to the pattern observed for the wild-type miR-200b expression. We further experimentally showed that, in contrast to wild-type miRNA, the edited miR-200b can promote cell invasion and migration through its impaired ability to inhibit <I>ZEB1/ZEB2</I> and acquired concomitant ability to repress new targets, including <I>LIFR</I>, a well-characterized metastasis suppressor. Our study highlights the importance of miRNA editing in gene regulation and suggests its potential as a biomarker for cancer prognosis and therapy.</P>

      • KCI등재후보

        Investigation of PCR-RFLPs within Major Histocompatibility Complex B-G Genes Using Two Restriction Enzymes in Eight Breeds of Chinese Indigenous Chickens

        R. F. Xu,K. Li,G. H. Chen,B. Y. Z. Qiang,D. L. Mo,B. Fan,C. C. Li,M. Yu,M. J. Zhu,T. A. Xiong,B. Liu 아세아·태평양축산학회 2005 Animal Bioscience Vol.18 No.7

        New polymorphism of major histocompatibility complex B-G genes was investigated by amplification and digestion of a 401bp fragment including intron 1 and exon 2 using polymerase chain reaction-restriction fragment length polymorphism (PCRRFLP) technique with two restriction enzymes of Msp I and Tas I in eight breeds of Chinese indigenous chickens and one exotic breed. In the fragment region of the gene, three novel single nucleotide polymorphisms (SNPs) were detected at the two restriction sites. We found the transition of two nucleotides of A294G and T295C occurred at Tas I restriction site, and consequently led to a nonsynonymous substitution of asparagine into serine at position 54 within the deduced amino acid sequence of immunoglobulin variableregion- like domain encoded by the exon 2 of B-G gene. It was observed at rare frequency that a single mutation of A294G occurring at the site, also caused an identical substitution of amino acid, asparagine 54-to-serine, to that we described previously. And the transversion of G319C at Msp I site led to a non-synonymous substitution, glutamine 62-to-histidine. The new alleles and allele frequencies identified by the PCR-RFLP method with the two enzymes were characterized, of which the allele A and B frequencies at Msp I and Tas I loci were given disequilibrium distribution either in the eight Chinese local breeds or in the exotic breed. By comparison, allele A at Msp I locus tended to be dominant, while, the allele B at Tas I locus tended to be dominant in all of the breeds analyzed. In Tibetan chickens, the preliminary association analysis revealed that no significant difference was observed between the different genotypes identified at the Msp I and Tas I loci and the laying performance traits, respectively.

      • KCI등재

        Variation of cassiicolin genes among Chinese isolates of Corynespora cassiicola

        Jun Wu,Xue-Wen Xie,Yan-Xia Shi,A-Li Chai,Qi Wang,Bao-ju Li 한국미생물학회 2018 The journal of microbiology Vol.56 No.9

        Corynespora cassiicola is a species of fungus that is a plant pathogen of many agricultural crop plants, including severe target spot disease on cucumber. Cassiicolin is an important effector of pathogenicity of this fungus. In this study, we collected 141 Corynespora isolates from eighteen hosts, and the casscolin gene was detected in 82 C. cassiicola strains. The deduced protein sequences revealed that 72 isolates contained the Cas2 gene, two strains from Gynura bicolor harboured the Cas2.2 gene, and 59 isolates without a cassiicolin gene were classified as Cas0. Phylogenetic analyses was performed for the 141 isolates using four loci (ITS, ga4, caa5, and act1) and revealed two genetic clusters. Cluster A is composed of four subclades: subcluster A1 includes all Cas2 isolates plus 18 Cas0 strains, subcluster A2 includes the eight Cas5 isolates and one Cas0 isolate, and subclusters A3 and A4 contain Cas0 strains. Cluster B consists of 21 Cas0 isolates. Twenty-two C. cassiicola strains from different toxin classes showed varying degrees of virulence against cucumber. Cas0 or Cas2 strains induced diverse responses on cucumber, from no symptoms to symptoms of moderate or severe infection, but all Cas5 isolates exhibited avirulence on cucumber.

      • Ion specific effects in bundling and depolymerization of taxol-stabilized microtubules

        Needleman, Daniel J.,Ojeda-Lopez, Miguel A.,Raviv, Uri,Miller, Herbert P.,Li, Youli,Song, Chaeyeon,Feinstein, Stuart C.,Wilson, Leslie,Choi, Myung Chul,Safinya, Cyrus R. The Royal Society of Chemistry 2013 Faraday discussions Vol.166 No.-

        <P>Microtubules (MTs) are nanometer scale hollow cylindrical biological polyelectrolytes. They are assembled from α/β-tubulin dimers, which stack to form protofilaments (PFs) with lateral interactions between PFs resulting in the curved MT. In cells, MTs and their assemblies are critical components in a range of functions from providing tracks for the transport of cargo to forming the spindle structure during mitosis. Previous studies have shown that while cations with valence equal to or larger than 3+ tend to assemble tight 3D bundles of taxol-stabilized MTs, certain divalent cations induce relatively loose 2D bundles of different symmetry (D. J. Needleman <I>et al.</I>, <I>Proc. Natl. Acad. Sci. U. S. A.</I>, 2004, <B>101</B>, 16099). Similarly, divalent cations form 2D bundles of DNA adsorbed on cationic membranes (I. Koltover <I>et al.</I>, <I>Proc. Natl. Acad. Sci. U. S. A.</I>, 2000, <B>97</B>, 14046). The bundling behavior for these biological polyelectrolyte systems is qualitatively in agreement with current theory. Here, we present results which show that, unlike the case for DNA adsorbed on cationic membranes, bundling of taxol-stabilized MTs occurs only for certain divalent cations above a critical ion concentration (<I>e.g.</I> Ca<SUP>2+</SUP>, Sr<SUP>2+</SUP>, Ba<SUP>2+</SUP>). Instead, many divalent cations pre-empt the bundling transition and depolymerize taxol-stabilized MTs at a lower counterion concentration. Although previous cryogenic TEM has shown that, in the absence of taxol, Ca<SUP>2+</SUP> depolymerizes MTs assembling in buffers containing GTP (guanosine triphosphate), our finding is surprising given the known stabilizing effects of taxol on GDP (guanosine diphosphate)-MTs. The ion concentration required for MT depolymerization decreases with increasing atomic number for the divalents Mg<SUP>2+</SUP>, Mn<SUP>2+</SUP>, Co<SUP>2+</SUP>, and Zn<SUP>2+</SUP>. GdCl<SUB>3</SUB> (3+) is found to be extremely efficient at MT depolymerization requiring ion concentrations of about 1 mM, while oligolysine (2+), is observed not to depolymerize MTs at concentrations as high as 144 mM. The surprising MT depolymerization results are discussed in the context of divalents either disrupting lateral interactions between PFs (which are strengthened for taxol containing β-tubulin), or interfering with taxol's ability to induce flexibility at the interface between two tubulin dimers in the same PF (which has been recently suggested as a mechanism by which taxol stabilizes MTs post-hydrolysis with the induced flexibility counteracting the kink between GDP-tubulin dimers in a PF).</P>

      • Involvement of 14-3-3 in tubulin instability and impaired axon development is mediated by Tau

        Joo, Yuyoung,Schumacher, Benjamin,Landrieu, Isabelle,Bartel, Maria,Smet-Nocca, Caroline,Jang, Ahram,Choi, Hee Soon,Jeon, Noo Li,Chang, Keun-A,Kim, Hye-Sun,Ottmann, Christian,Suh, Yoo-Hun The Federation of American Societies for Experimen 2015 The FASEB Journal Vol.29 No.10

        <P>14-3-3 proteins act as adapters that exert their function by interacting with their various protein partners. 14-3-3 proteins have been implicated in a variety of human diseases including neurodegenerative diseases. 14-3-3 proteins have recently been reported to be abundant in the neurofibrillary tangles (NFTs) observed inside the neurons of brains affected by Alzheimer’s disease (AD). These NFTs are mainly constituted of phosphorylated Tau protein, a microtubule-associated protein known to bind 14-3-3. Despite this indication of 14-3-3 protein involvement in the AD pathogenesis, the role of 14-3-3 in the Tauopathy remains to be clarified. In the present study, we shed light on the role of 14-3-3 proteins in the molecular pathways leading to Tauopathies. Overexpression of the 14-3-3σ isoform resulted in a disruption of the tubulin cytoskeleton and prevented neuritic outgrowth in neurons. NMR studies validated the phosphorylated residues pSer214 and pSer324 in Tau as the 2 primary sites for 14-3-3 binding, with the crystal structure of 14-3-3σ in complex with Tau-pSer214 and Tau-pSer324 revealing the molecular details of the interaction. These data suggest a rationale for a possible pharmacologic intervention of the Tau/14-3-3 interaction.—Joo, Y., Schumacher, B., Landrieu, I., Bartel, M., Smet-Nocca, C., Jang, A., Choi, H. S., Jeon, N. L., Chang, K.-A., Kim, H.-S., Ottmann, C., Suh, Y.-H. Involvement of 14-3-3 in tubulin instability and impaired axon development is mediated by Tau.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼