RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 용수재이용을 위한 하수처리 유출수의 UV 소독 효율 연구

        윤춘경 ( Chun G. Yoon ),정광욱 ( Kwang Wook Jung ),함종화 ( Jong Hwa Ham ),전지홍 ( Ji Hong Jeon ) 한국농공학회 2003 韓國農工學會誌 : 전원과 자원 Vol.45 No.2

        The feasibility study of UV-disinfection system was performed for disinfection of effluent from wastewater treatment plant. Three low-pressure UV lamps of 17, 25, and 41 W were examined with various flow rates. Low-pressure UV lamps of 17W were examined with various turbidity, DOM (dissolved organic matter), and SS (suspended solid). The pilot plant was a flow-through type UV-disinfection system, and the range of exposure time varied from 5 to 40 seconds, turbidity from 0 to 40 NTU, DOM from 0 to 30 mg/L, and SS from 10 to 40 mg/L. The 41W lamp demonstrated complete disinfection showing no survival ratio in all the experimental conditions, and generally 17W and 25W lamps also showed high removal ratio over 97%. For the same UV dose (UV intensity times exposure time), high intensity-short exposure conditions showed better disinfection efficiency than low intensity-long exposure conditions. While the effects of turbidity and DOM were not apparent, the effects of SS was significant on the disinfection efficiency which indicates that SS control before UV-disinfection appears to be necessary to increase removal efficiency. Considering characteristics of effluent from existing wastewater treatment plants, cost-effectiveness, stable performance, and minimum maintenance, the flow-through type UV-disinfection system with high intensity and low-pressure lamps was thought to be a competitive disinfection system for wastewater reclamation.

      • 용수재이용을 위한 하수처리 유출수의 UV 소독 후 광회복 조사

        윤춘경 ( Chun G. Yoon ),정광욱 ( Kwang Wook Jung ),함종화 ( Jong Hwa Ham ),전지홍 ( Ji Hong Jeon ) 한국농공학회 2003 韓國農工學會誌 : 전원과 자원 Vol.45 No.3

        Photoreactivation of microorganism following UV-disinfection is one of the research topics of interest in assessing the UV-disinfection performance. Apparent photoreactivation was examined under fluorescent lamp and solar radiation as well as in darkness. Total coliform, fecal coliform, and Escherichia coli were used as indicator microorganisms, and their concentration was monitored with time after UV-disinfection. Under the darkness, their initial concentration of 10∼30 MPN/100 mL increased to the level of 100 MPN/100 mL after 24 hours, which implied that part of damaged microorganisms by UV-disinfection might be repairable with time. Under the fluorescent lamp, photoreactivation was more apparent that their concentration increased up to 1,000 MPN/100 mL which might significantly impair the water uses specially in reuse of reclaimed wastewater. However, their concentration further decreased down to below 2 MPN/100 mL under the solar radiation primarily due to additional disinfection by solar radiation rather than photoreactivation. Samples not disinfected by UV-disinfection also demonstrated substantial decrease of their concentration under solar radiation from about 5,000 MPN/100 mL to less than 30 MPN/100 mL in 24 hours. But direct reuse of effluent without disinfection is not recommended because natural decay by solar radiation may take time and be affected by climatic conditions. The result suggests that photoreactivation of pathogenic microorganisms may not be concerned in agricultural reuse of reclaimed wastewater because solar radiation may provide further disinfection after UV-disinfection.

      • 자연정화방법에 의한 오수처리와 농업적 재이용 타당성 검토

        윤춘경 ( Chun G. Yoon ),정광욱 ( Kwang Wook Jung ),함종화 ( Jong Hwa Ham ),전지홍 ( Ji Hong Jeon ) 한국농공학회 2003 韓國農工學會誌 : 전원과 자원 Vol.45 No.6

        A pilot study was performed to examine the feasibility of the pond system for further polishing of treatment wetland effluent to agricultural reuse of reclaimed water. The constructed wetland and pond system was installed in Konkuk University and the effluent from septic tank of school building was used as an influent to the wetland system. The effluent of the wetland was used as an influent to pond systems. The influent concentrations of total coliform(TC), fecal coliform (FC), and E. coli were about 10<sup>5</sup>MPN/100 ml, and they were reduced to less than 10,000 MPN/100 ml on average after wetland treatments, showing over 95 % removal. And they were further reduced to less than 1,000 MPN/100 ml in average, showing over 85∼93 % removal after pond treatment. Turbidity and SS were improved effectively on average and their pond effluent concentration was about 4.5 NTU and 9.8 mg/L in average, respectively Average BOD<sup>5</sup> concentrations were also reduced substantially to 9.3 mg/L with about 83 % removal rate after wetland and pond treatment systems. Nutrients removal was relatively low and removal rate for T-N and T-P was less than 43 and 44%, respectively after wetland and pond treatment. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, pond system was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water. This paper describes a preliminary result Iron pilot study and further investigations are recommended on the optimum design parameters before full scale application.

      • 담수심과 오수처리수 관개가 벼재배에 미치는 영향

        윤춘경 ( Chun G. Yoon ),황하선 ( Ha Sun Hwang ),정광욱 ( Kwang Wook Jung ),전지홍 ( Ji Hong Jeon ) 한국농공학회 2003 韓國農工學會誌 : 전원과 자원 Vol.45 No.4

        Pilot study was conducted to examine the effects of ponded-water depth and reclaimed wastewater irrigation on paddy rice culture. For the ponded-water depth effect, three treatments of shallow, traditional, and deep water depths were applied, and each treatment was triplicated. The irrigation water for the treatment pots was an effluent from constructed wetland system for sewage treatment, while the control pot was irrigated with tap water kept traditional ponded-water depth. Irrigation water quantity varied with ponded-water depth as expected and drainage water quantity also varied similarly, which implies that shallow irrigation might save irrigation water and also reduce environmental impacts on downstream water quality. Rice growth and production were not significantly affected by ponded-water depth within the experimental condition, instead there was an indication of increased production in shallow and deep ponded-water depths compared to the traditional practice. Raising drainage outlet to the adequate height in paddy dike might be beneficial to save water resources within the paddy field. There was no adverse effect observed in reclaimed wastewater irrigation on the rice production, and mean yield was even greater than the control pots with tap water irrigation although statistically not significant. Water-saving irrigation by shallow ponded-water depth, raising the outlet height in diked rice paddy fields, minimizing forced surface drainage by well-planned irrigation, and reclaimed wastewater irrigation are suggested to save water and protect water quality. However, deviation from traditional farming practices might affect rice growth in long term, and therefore, further investigations are recommended before full scale application.

      • 농업적 용수재이용을 위한 간헐분사 완속모래여과 하수재처리 효율 평가

        윤춘경 ( Chun G. Yoon ),정광욱 ( Kwang Wook Jung ),함종화 ( Jong Hwa Ham ),황하선 ( Ha Sun Hwang ) 한국농공학회 2003 韓國農工學會誌 : 전원과 자원 Vol.45 No.5

        A pilot study was performed to examine the feasibility of intermittent slow sand filtration for agricultural reuse of reclaimed water. The effluent of biofilter for 16-unit apartment was used as influent to the slow sand filtration system at 0.6 ㎥/day loading rate using 15 seconds spray in every 10 minutes on the about 1㎡ surface area and 0.5 m depth. The influent concentrations of total coliform (TC), fecal coliform (FC) and E. coli were in the range of 10.000 MPN/100 mL, and they were reduced to less than 1,000 MPN/100 mL after filtration with average of 320, 270, and 154 MPN/100 mL, respectively, showing over 95 % removal. Turbidity and SS were improved effectively and their average concentration was reduced to 0.8 NTU and 1.7 mg/L, respectively, and removal rate was about 50 %. Average BOD and COD concentrations were also reduced substantially to 2.6 and 25.8 mg/L with about 55 and 21 % removal rate, respectively. Nutrients removal was relatively low and removal rate for T-N and T-P was low however, remaining nutrients might be beneficial and less concerned in case of agricultural reuse. The concentration of biofilter effluent used in this experiment was in the range of secondary treatment effluent but slightly stronger than the one from existing wastewater treatment plants (WWTPs). Therefore, intermittent slow sand filtration might be also applicable to the effluent from WWTPs as long as its agricultural reuse is available. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, the intermittent slow sand filtration was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water. This paper is a preliminary result from pilot study and further investigations are recommended on the optimum design parameters before full scale application.

      • KCI등재

        자유수면형 인공습지에 의한 저농도 고유량의 하천수질개선 효과 분석

        함종화,윤춘경,구원석,김형철,신현범,Ham, Jong-Hwa,Yoon, Chun G.,Koo, Won-Seck,Kim, Hyung-Chul,Shin, Hyum-Bhum 한국농공학회 2005 한국농공학회논문집 Vol.47 No.1

        Wetland systems are widely accepted natural water purification systems around the world in nonpoint sources pollution control. Constructed wetlands have become a popular technology for treating contaminated surface and wastewater. In this study, the field experiment to reduce nonpoint source pollution loadings from polluted stream waters using wetland system was performed from June 2002 to March 2004, including winter performance using four newly constructed wetlands. The Dangjin stream water flowing into Seokmun estuarine lake was pumped into wetlands, and inflow and hydraulic residence time of the system was $500m^{3}{\~}1500m^{3}/day\;and\;2{\~}5$ days respectively. After 3 years operation plant-coverage was about $80~90\%$ from zero at initial stage even with no plantation. Average water quality of the influent in growing season was BOD_{5}\;3.96mg/L$, TSS 22.98 mg/L, T-N 3.29 mg/L, T-P 0.30 mg/L. The average removal rate of four wetlands for $BOD_{5},\;TSS,\;T-N\;and\;T-P$ in growing season was $24\%$, $62\%$, $54\%$, and $51\%$, respectively. And average water quality of the influent in winter season was $BOD_{5}$ 4.92 mg/L, TSS 12.47 mg/L, T-N 5.54 mg/L, and T-P 0.32 mg/L, respectively. The average removal rate of four wetlands for them was $-21\%$. $23\%$, $33\%$, and $53\%$, respectively. The reason of higher BOD_{5} effluent concentration in winter season might be that low temperature restrained microorganism activity and a organic body from the withered plant and algae was flown out. Except the result of $BOD_{5}$, the effectiveness of water quality improvement in winter season was satisfactory for treating polluted stream waters, and $BOD_{5}$ variation was within the range of background concentration. Performance of the experimental system was compared with existing data base (NADB), and it was within the range of general system performance. Overall, the wetland system was found to be satisfactory for NPS control such as improvement of polluted stream water.

      • KCI등재

        BASINS/HSPF를 이용한 화성유역 오염부하량의 정량적 평가

        정광욱,윤춘경,장재호,김형철,Jung, Kwang-Wook,Yoon, Chun-G.,Jang, Jae-Ho,Kim, Hyung-Chul 한국농공학회 2007 한국농공학회논문집 Vol.49 No.2

        A mathematical modeling program called Hydrological Simulation Program-FORTRAN (HSPF) developed by the United States Environmental Protection Agency (EPA) was applied to Hwaseong watershed. It was run under BASINS (Better Assessment Science for Integrating Point and Nonpoint Sources) program, and the model was validated using monitoring data of $2002{\sim}2005$. The model efficiency of runoff ranged from good to fair in comparison between simulated and observed data, while it was from very good to poor in the water quality parameters. But its reliability and performance were within the expectation considering complexity of the watershed and pollutant sources. The nonpoint source (NPS) loading for T-N and T-P during the monsoon rainy season (June to September) was about 80% of total NPS loading, and runoff volume was also in a similar range. However, NPS loading for BOD ($55{\sim}60%$) didn't depend on rainfall because BOD was mostly discharged from point source (more than 70%). And water quality was not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. BASINS/HSPF was applied to the Hwaseong watershed successfully without difficulty, and it was found that the model could be used conveniently to assess watershed characteristics and to estimate pollutant loading including point and nonpoint sources in watershed scale.

      • KCI등재

        물리적 설계인자가 인공습지의 처리효율에 미치는 영향

        함종화,윤춘경,구원석,김형철,신현범,Ham Jong-Hwa,Yoon Chun G.,Koo Won-Seok,Kim Hyung-Chul,Shin Hyum-Bhum 한국농공학회 2005 한국농공학회논문집 Vol.47 No.5

        The field scale experiment was performed to examine the effect of physical design parameters on the constructed wetland performance and recommend the feasible design of constructed wetland in Korean polder areas. Four sets (each set of 0.85 ha) of wetland (0.8 ha) and pond (0.08 ha) systems were used. Two different wetland systems, a wetland-pond system and a pond-wetland system, were studied to examine the effect of wetland and pond configuration. And two different length-to-width ratios were used, 2: 1 and 0.8: 1, to examine the effect of aspect ratio. A pond-wetland system was more preferable than a wetland-pond system, and also requires a smaller area than a wetland-pond system or a wetland system to reduce T-P. There was no difference in effluent concentration between the 2:1 system and the 0.8:1 system. Although the linear velocity of the 2:1 aspect was higher than the 0.8:1 aspect, resuspension was not a factor in this study due to a very low linear velocity. From this study and other literature review, it was found that design method of paddy rice field could be applied and expanded to the design of constructed wetland in Korea. Further investigation for the detailed design parameters of constructed wetland needs be continued for design method of paddy rice to be applied in full scale.

      • KCI등재

        소규모 오수발생지역의 고도처리시설을 위한 상.하 흐름형 인공습지 개발

        김형중,윤춘경,권태영,정광욱,Kim, Hyung-Joong,Yoon, Chun-G.,Kwun, Tae-Young,Jung, Kwang-Wook 한국농공학회 2006 한국농공학회논문집 Vol.48 No.6

        The feasibility of the up- and down-flow constructed wetland was examined fur rural wastewater treatment in Korea. Many constructed wetland process was suffered from substrate clogging and high plant stresses because of long term operation. The up- and down-flow constructed wetland process used porous granule materials (charcoal pumice : SSR=10:20:70) for promoting intake rate of nutrient to plant, and especially flow type was designed continuously repeating from up-flow to down-flow. $BOD_5$ and SS was removed effectively by the process with the average removal rate being about 75% respectively. The wetland process was effective in treating nutrient as well as organic pollutant. Removal of TN and TP were more effective than other wetland system and mean effluent concentrations were approximately 7.5 and $0.4mg\;L^{-1}$ which satisfied the water quality standard for WWTPs. The treatment system did not experience any clogging or accumulations of pollutants and reduction of treatment efficiency during winter period because constructed polycarbonate glass structure prevented temperature drop. Considering stable performance and effective removal of pollutant in wastewater, low maintenance, and cost-effectiveness, the up- and down-flow constructed wetland was thought to be an effective and feasible alternative in rural area.

      • KCI등재

        인공습지를 이용한 하구담수호 유입하천수 수질개선 현장실험결과 분석

        함종화,윤춘경,구원석,김형철,신현범,Ham, Jong-Hwa,Yoon, Chun-G.,Koo, Won-Seok,Kim, Hyung-Chul,Shin, Hyun-Bhum 한국농공학회 2004 한국농공학회논문집 Vol.46 No.5

        Wetland system is widely accepted as one of natural water purification systems around the world for nonpoint sources pollution control. Constructed wetlands have become a popular technology for treating contaminated surface and waste water. In this study, the field experiment to reduce nonpoint source pollution loadings from polluted stream waters using wetland system was performed from June 2002 to March 2004. Four wetlands were used and the size of each one was 0.8ha. Water of Dangjin stream flowing into Seokmun estuarine reservoir was pumped into wetlands. Inflow and hydraulic residence time of the system was 500 $m^3$/day∼1,500 $m^3$/day, 2∼5 days, respectively. After 2 year operation, plant-coverage of the wetlauds was about 70% from bare soil surface at initial stage . Average water quality of the influent was $BOD_5$ 4.17 mg/L, TSS 18.45 mg/L, T-N 4.32 mg/L, and T-P 0.30 mg/L. The average removal rate of $BOD_5$, TSS, T-N and T-P during the study period was 5.6%, 46.6%, 45.7%, and 54.8%, respectively. Organic ($BOD_5$) removal rate was low and the reason might be low influent concentration. Wetland removal rate of T-P was about 10% higher than T-N. Performance of the experimental system was compared with existing data base (NADB), and it was within the range of general system performance. Overall, the wetland system was found to be adequate for treating polluted water stream with stable removal efficiency even during the winter period. Most of the nonpoint source pollutions from watershed are transported by streams or ditches, and they could be controled by constructed wetland system before entering the lake or reservoir.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼