RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A Fast Anti-jamming Decision Method Based on the Rule-Reduced Genetic Algorithm

        ( Jin Hui ),( Song Xiaoqin ),( Wang Miao ),( Niu Yingtao ),( Li Ke ) 한국인터넷정보학회 2016 KSII Transactions on Internet and Information Syst Vol.10 No.9

        To cope with the complex electromagnetic environment of wireless communication systems, anti-jamming decision methods are necessary to keep the reliability of communication. Basing on the rule-reduced genetic algorithm (RRGA), an anti-jamming decision method is proposed in this paper to adapt to the fast channel variations. Firstly, the reduced decision rules are obtained according to the rough set (RS) theory. Secondly, the randomly generated initial population of the genetic algorithm (GA) is screened and the individuals are preserved in accordance with the reduced decision rules. Finally, the initial population after screening is utilized in the genetic algorithm to optimize the communication parameters. In order to remove the dependency on the weights, this paper deploys an anti-jamming decision objective function, which aims at maximizing the normalized transmission rate under the constraints of minimizing the normalized transmitting power with the pre-defined bit error rate (BER). Simulations are carried out to verify the performance of both the traditional genetic algorithm and the adaptive genetic algorithm. Simulation results show that the convergence rates of the two algorithms increase significantly thanks to the initial population determined by the reduced-rules, without losing the accuracy of the decision-making. Meanwhile, the weight-independent objective function makes the algorithm more practical than the traditional methods.

      • KCI등재

        Modeling and Analyzing Per-flow Throughput in IEEE 802.11 Multi-hop Ad Hoc Networks

        ( Lei Lei ),( Xinru Zhao ),( Shengsuo Cai ),( Xiaoqin Song ),( Ting Zhang ) 한국인터넷정보학회 2016 KSII Transactions on Internet and Information Syst Vol.10 No.10

        In this paper, we focus on the per-flow throughput analysis of IEEE 802.11 multi-hop ad hoc networks. The importance of an accurate saturation throughput model lies in establishing the theoretical foundation for effective protocol performance improvements. We argue that the challenge in modeling the per-flow throughput in IEEE 802.11 multi-hop ad hoc networks lies in the analysis of the freezing process and probability of collisions. We first classify collisions occurring in the whole transmission process into instantaneous collisions and persistent collisions. Then we present a four-dimensional Markov chain model based on the notion of the fixed length channel slot to model the Binary Exponential Backoff (BEB) algorithm performed by a tagged node. We further adopt a continuous time Markov model to analyze the freezing process. Through an iterative way, we derive the per-flow throughput of the network. Finally, we validate the accuracy of our model by comparing the analytical results with that obtained by simulations.

      • KCI등재

        Bone Morphogenetic Protein 9 Overexpression Reduces Osteosarcoma Cell Migration and Invasion

        Zilan Lv,Ya-guang Weng,Dandan Yang,Jie Li,Min Hu,Min Luo,Xiaoqin Zhan,Peipei Song,Chen Liu,Huili Bai,Baolin Li,Yang Yang,Yingying Chen,Qiong Shi 한국분자세포생물학회 2013 Molecules and cells Vol.36 No.2

        Transforming growth factor- (TGF-) is known to pro-mote tumor migration and invasion. Bone morphogenetic proteins (BMPs) are members of the TGF- family expressed in a variety of human carcinoma cell lines. The role of bone morphogenetic protein 9 (BMP9), the most powerful osteogenic factor, in osteosarcoma (OS) progression has not been fully clarified. The expression of BMP9 and its receptors in OS cell lines was analyzed by RT-PCR. We found that BMP9 and its receptors were expressed in OS cell lines. We further investigated the influence of BMP9 on the biological behaviors of OS cells. BMP9 overexpression in the OS cell lines 143B and MG63 inhibited in vitro cell migration and invasion. We further investigated the ex-pression of a panel of cancer-related genes and found that BMP9 overexpression increased the phosphorylation of Smad1/5/8 proteins, increased the expression of ID1, and reduced the expression and activity of matrix metalloproteinase 9 (MMP9) in OS cells. BMP9 silencing induced the opposite effects. We also found that BMP9 may not affect the chemokine (C-X-C motif) ligand 12 (CXCL12)/C-X-C chemokine receptor type 4 (CXCR4) axis to regulate the invasiveness and metastatic capacity of OS cells. Interestingly, CXCR4 was expressed in both 143B and MG63 cells, while CXCL12 was only detected in MG63 cells. Taken together, we hypothesize that BMP9 inhibits the migration and invasiveness of OS cells through a Smad-dependent pathway by downregulating the expression and activity of MMP9.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼