RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Differential Desensitization and Internalization of Three Different Bullfrog Gonadotropin-releasing Hormone Receptors

        Sujata Acharjee,Kaushik Maiti,Jae Mok Soh,Wook-Bin Im,Jae Young Seong,Hyuk Bang Kwon 한국분자세포생물학회 2002 Molecules and cells Vol.14 No.1

        We previously demonstrated the presence of three dis-tinct types of the gonadotropin-releasing hormone re-ceptor (GnRHR) in a bullfrog (denoted bfGnRHR-1, bfGnRHR-2, and bfGnRHR-3). The bfGnRHRs exhib-ited differential tissue distribution and ligand selectiv-ity. In the present study, we demonstrated the desensi-tization and internalization kinetics of these receptors in both transiently-transfected HEK293 cells and ret-rovirus-mediated stable cells. The time-course accu-mulation of the inositol phosphate in response to GnRH revealed that bfGnRHR-1 and -2 were rapidly desensitized, whereas bfGnRHR-3 was slowly desensi-tized. A comparison of the internalization kinetics re-vealed the most rapid rate and highest extent of inter-nalization of bfGnRHR-2 among the three receptors. Interestingly, the mechanisms that underlie the recep-tor internalization appear to differ from each other. Internalization of bfGnRHR-1 was dependent on both dynamin and b-arrestin, whereas those of bfGnRHR-2 and -3 were dependent on dynamin, but not on b-arrestin. These results, therefore, suggest that differen-tial regulatory mechanisms for desensitization and internalization of the GnRHR are involved in diverse cellular and physiological responses to GnRH stimula-tion.

      • KCI등재

        GnRH-II Analogs for Selective Activation and Inhibition of Non-Mammalian and Type-II Mammalian GnRH Receptors

        Jae Young Seong,Kaushik Maiti,Jian Hua Li,Ai Fen Wang,Sujata Acharjee,Wang Phil Kim,임욱빈,권혁방 한국분자세포생물학회 2003 Molecules and cells Vol.16 No.2

        ecently, we identified three types of non-mammalian gonadotropin-releasing hormone receptors (GnRHR) in the bullfrog (designated bfGnRHR-1-3), and a mammalian type-II GnRHR in green monkey cell lines (denoted gmGnRHR-2). All these receptors responded better to GnRH-II than GnRH-I, while mammalian type-I GnRHR showed greater sensitivity to GnRH-I than GnRH-II. In the present study, we designed new GnRH-II analogs and examined whether they acti- vated or inhibited non-mammalian and mammalian type-II GnRHRs. [D-Ala 6 ]GnRH-II, with D-Ala substi- tuted for Gly 6 in GnRH-II, increased inositol phos- phate (IP) production in cells stably expressing non- mammalian GnRHRs more effectively than native GnRH-II. However, it exhibited lower activity for mammalian type-I GnRHR than GnRH-I itself. Trptorelix-1, a GnRH-II antagonist, inhibited GnRH- induced IP production in cells expressing non- mammalian GnRHRs more effectively than Cetrorelix, a GnRH-I antagonist. Trptorelix-1, however, had lower potency for mammalian type-I GnRHR than Cetrorelix. Ligand-receptor binding assays revealed that [D-Ala 6 ]GnRH-II and Trptorelix-1 have higher affinities for non-mammalian GnRHRs but lower af- finities for mammalian type-I GnRHR than GnRH-II and Cetrorelix, respectively. Moreover, [D-Ala 6 ]GnRH- II and Trptorelix-1 had a higher affinity for gmGnRHR-2 than GnRH-II and Cetrorelix, respec- tively. These results indicate that [D-Ala 6 ]GnRH-II and Trptorelix-1 are highly effective agonist and antagonist, respectively, for non-mammalian and type- II mammalian GnRHRs

      • KCI등재SCISCIE

        Involvement of Amino Acids Flanking Glu<sup>7.32</sup> of the Gonadotropin-releasing Hormone Receptor in the Selectivity of Antagonists

        Wang, Cheng bing,Oh, Da young,Maiti, Kaushik,Kwon, Hyuk bang,Cheon, Jun,Hwang, Jong iIk,Seong, Jae young Korean Society for Molecular Biology 2008 Molecules and cells Vol.25 No.1

        The Glu/Asp<sup>7.32</sup> residue in extracellular loop 3 of the mammalian type-I gonadotropin-releasing hormone receptor (GnRHR) interacts with Arg<sup>8</sup> of GnRH-I, conferring preferential ligand selectivity for GnRH-I over GnRH-II. Previously, we demonstrated that the residues (Ser and Pro) flanking Glu/Asp<sup>7.32</sup> also play a role in the differential agonist selectivity of mammalian and non-mammalian GnRHRs. In this study, we examined the differential antagonist selectivity of wild type and mutant GnRHRs in which the Ser and Pro residues were changed. Cetrorelix, a GnRH-I antagonist, and Trptorelix-2, a GnRH-II antagonist, exhibited high selectivity for mammalian type-I and non-mammalian GnRHRs, respectively. The inhibitory activities of the antagonists were dependent on agonist concentration and subtype. Rat GnRHR in which the Ser-Glu-Pro (SEP) motif was changed to Pro-Glu-Val (PEV) or Pro-Glu-Ser (PES) had increased sensitivity to Trptorelix-2 but decreased sensitivity to Cetrorelix. Mutant bullfrog GnRHR-1 with the SEP motif had the reverse antagonist selectivity, with reduced sensitivity to Trptorelix-2 but increased sensitivity to Cetrorelix. These findings indicate that the residues flanking Glu<sup>7.32</sup> are important for antagonist as well as agonist selectivity.

      • Extracellular loop 3 (EL3) and EL3-proximal transmembrane helix 7 of the mammalian type I and type II gonadotropin-releasing hormone (GnRH) receptors determine differential ligand selectivity to GnRH-I and GnRH-II.

        Li, Jian Hua,Choe, Han,Wang, Ai Fen,Maiti, Kaushik,Wang, Chengbing,Salam, Abdus,Chun, Sang Young,Lee, Won-Kyo,Kim, Kyungjin,Kwon, Hyuk Bang,Seong, Jae Young American Society for Pharmacology and Experimental 2005 Molecular pharmacology Vol.67 No.4

        <P>Mammalian type I and II gonadotropin-releasing hormone (GnRH) receptors (GnRHRs) show differential ligand preference for GnRH-I and GnRH-II, respectively. Using a variety of chimeric receptors based on green monkey GnRHR-2 (gmGnRHR-2), a representative type II GnRHR, and rat GnRHR, a representative type I GnRHR, this study elucidated specific domains responsible for this ligand selectivity. A chimeric gmGnRHR-2 with the extracellular loop 3 (EL3) and EL3-proximal transmembrane helix 7 (TMH7) of rat GnRHR showed a great increase in ligand sensitivity to GnRH-I but not to GnRH-II. Point-mutation studies indicate that four amino acids, Leu/Phe(7.38), Leu/Phe(7.43), Ala/Pro(7.46), and Pro/Cys(7.47) in TMH7 are critical for ligand selectivity as well as receptor conformation. Furthermore, a combinatory mutation (Pro(7.31)-Pro(7.32)-Ser(7.33) motif to Ser-Glu-Pro in EL3 and Leu(7.38), Leu(7.43), Ala(7.46), and Pro(7.47) to those of rat GnRHR) in gmGnRH-2 exhibited an approximately 500-fold increased sensitivity to GnRH-I, indicating that these residues are critical for discriminating GnRH-II from GnRH-I. [Trp(7)]GnRH-I and [Trp(8)]GnRH-I but not [His(5)]GnRH-I exhibit a higher potency in activating wild-type gmGnRHR-2 than native GnRH-I, indicating that amino acids at positions 7 and 8 of GnRHs are more important than position 5 for differential recognition by type I and type II GnRHRs. As a whole, these data suggest a molecular coevolution of ligands and their receptors and facilitate the understanding of the molecular interaction between GnRHs and their cognate receptors.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼