RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI우수등재

        Carassius auratus(goldfish)를 이용한 Chlorothalonil의 단기간 생물농축계수와 분배계수의 측정

        차춘근,전봉식,민경진 한국환경보건학회 1995 한국환경보건학회지 Vol.21 No.3

        The Bioconcentration factor (BCF) is used as an important criterion in the risk assessment of environmental contaminants. Also it can be used as indicator of biomagnification of environmentally hazardous chemicals through food-chain as well as a tool for ranking the bioconcentration potential of the chemicals in the environment. This paper reports the measured BCF value on Chlorothalonil in Carassius auratus(goldfish), under steady state, and examined correlation between the BCF value and the partition coefficient or acute toxicity or physicochemical properties. Carassius auratus(goldfish) was chosen as test organism and test period were 3-day, 5-day. Experimental concentrations were 0.005, 0.01 and 0.05 ppm. Chlorothalonil in fish tissue and in test water were extracted with n-hexane and acetonitrile. GC-ECD was used to detecting and quantitating of Chlorothalonil. Partition coefficient was determined by stir-flask method. $LC_{50}$ was determined on Chlorothalonil. Carbaryl and BPMC. The obtained results were as follows. 1. It was possible to determine short term BCFs of Chlorothalonil through relatively simple procedure in environmental concentrations. 2. $BF_3$ of Chlorothalonil in concentration of 0.005, 0.01 and 0.05 ppm were 2.1866$\pm$0.23446, 3.5269$\pm$0.23517, 10.2045$\pm$0.18053 and BCFs were 6.6543$\pm$0.55257, 6.9774$\pm$0.02500, 23.4576$\pm$2.06884, respectively. 3. Chlorothalonil concentration in fish extract and BCFs of Chlorothalonil were increased as increasing test concentration and prolonging test period. 4. Fate of test-water concentration on Chlorothalonil was greater than that of control-water con-centration. It is considered that greater fate of test-water concentration on Chlorothalonil is due to hydrolyzing nitrile group under the mild condition and substituting chloro group by some aromatic compounds in test water. 5. Determined logP of Chlorothalonil was 2.80. And determined $LC_{50}$ of Chlorothalonil in time of 24, 48, 72 and 96 hr were 0.1684, 0.1402, 0.1400, 0.1352(mg/l) respectively. And $LC_{50}$ of Carbaryl in above times were 19.918, 18.635, 18.466, 18.12(mg/l) respectively. $LC_{50}$ of BPMC were 10.248, 9.166, 9.087, 8.921(mg/l) respectively. 6. It is suggested that the BCF of Carbamates depend on partition coefficients. But BCF of Chlorothalonil, organochlorine pesticide, would be strongly influenced by steric, electronic effect of substituents than partition coefficient.

      • KCI우수등재

        Carbofuran과 Chiorothalonil의 공존이 Brachydanio rerio(zebrafish)를 이용한 단기간 생물농축계수의 측정에 미치는 영향

        민경진,차춘근 한국환경보건학회 1997 한국환경보건학회지 Vol.23 No.2

        This study was performed to investigate the effect of co-existence of carbofuran and chlorothalonil on the short-term bioconcentration factor in Brachydanio rerio(zebrafish). The fishes were exposed to the single and combined treatment of carbofuran and chlorothalonil for 1, 3 and 5 days. Experimental concentrations of carbofuran were 0.05 and 0.10 ppm under the single treatment. And those of chlorothalonil were 0.005 and 0.010 ppm. Experimental concentrations of the combined treatment of carbofuran and chlorothalonil were 0.05 ppm+0.005 ppm, 0.05 ppm+0.010 ppm, 0.10 ppm+0.005 ppm for 1, 3 and 5 days, respectively. Carbofuran and chlorothalonil in fish and in test water were extracted with n-hexane and acetonitrile. GC-ECD was used to detect and quantitate carbofuran and chlorothalonil. 1-day, 3-day and 5-day bioconcentration factors(BCF$_1$, BCF$_3$ and BCF$_5$) of each pesticide were obtained from the quantitation results. The depuration rate of each pesticide was determined over the 24-h period after combined treatment. The results were as follows: Carbofuran did not bioaccumulate in zebrafish under the single and combined treatment for testing periods. BCF$_1$ values of chlorothalonil in concentration of 0.005 and 0.010 ppm under the single treatment were 0.508, 0.621, BCF$_3$ were 1.327, 1.511 and BCF$_5$ were 1.331, 1.597, respectively. BCF$_1$ values of chlorothalonil were 0.512, 0.520 and 0.619, respectively, when the concentration of carbofuran and chlorothalonil in combined treatment were 0.05+0.005, 0.05+0.010 and 0.10+0.005 ppm. BCF$_3$ values of chlorothalonil 1.341, 1.338 and 1.513, respectively, and BCF$_5$ values of chlorothalonil were 1.332, 1.327 and 1.521, respectively, under the above combined treatment. Depuration rate constants of chlorothalonil in concentration of 0.005 and 0.010 ppm under the single treatment were 0.011 and 0.012. Depuration rate constants of chlorothalonil were 0.011, 0.010 and 0.011, when the concentration of carbofuran and chlorothalonil in combined treatment were 0.05+0.005, 0.05+0.010 and 0.10+0.005 ppm. It was observed that no significant difference of carbofuran and chlorothalonil concentration in fish extracts, test water, BCFs and depuration rate constants of carbofuran and chlorothalonil between combined treatment and single treatment. It was considered that no appreciable interaction at experimental concentrations due to lower concentrations than LC$_{50}$. It is suggested that the difference of BCFs between carbofuran and chlorothalonil due to those of fat composition of fish and solubility of carbofuran and chlorothaionil.

      • KCI등재

        일부 농약의 생물농축계수의 측정

        민경진,차춘근 한국식품위생안전성학회 1999 한국식품위생안전성학회지 Vol.14 No.2

        The present study was performed to investigate the bioconcentration of BPMC, chlorothalonil, dichlorvos and methidathion. The BCFs(bioconcentration factors) and depuration rate constants for four pesticides in zebrafish(bracJxydanio rerio) were measured under semi-static conditions(OECD guideline 305-B) in a concentration of one-hundredth of the 96 hours LC_(50) of each pesticide at the equilibrium condition. The results obtained are summarized as follows : The BCFs of BPMC, chlorothalonil, dichlorvos and methidathion were 1.44±0.09, 2.223±0.063, 0.81±0.08 and 5.53±0.13, respectively. Depuration rate constants of BPMC, chlorothalonil, dichlorvos and methidathion were 0.028, 0.015, 0.220 and 0.152, respectively. The concentrations of BPMC, dichlorvos and methidathion in zebrafish reached an equilibrium in 3 days, and the equilibrium of chlorothalonil was reached after 14 days. Depuration rate of dichlorvos was the fastest followed by methidathion, BPMC and chlorothalonil. The lower BCF of BPMC was due to its relatively high K_(OW), slow K_(DEP), and low S_W and V_P, compared to chlorothalonil and methidathion. The BCF of chlorothalonil was much lower than that expected on the basis of high K_(OW) slow K_(DEP), low S_W and V_P. The reason is that the experimental concentration for chlorothalonil is 1/100 - 1/1000 lower than that of BPMC, dichlorvos and methidathion. The BCF of dichlorvos was lower than that of other pesticides due to its very rapid K_(DEP), very high V_P and S_W, and very low K_(OW). The BCF of methidathion was higher than that of other pesticides due to its very low V_P and S_W. Therefore, these data suggest that physicochemical properties of pesticides may be important in the bioconcentration.

      • KCI등재

        BPMC 와 Chlorothalonil 의 생분해율의 측정

        민경진,차춘근 한국식품위생안전성학회 1999 한국식품위생안전성학회지 Vol.14 No.3

        The present study was performed to investigate biodegradation rate of BPMC(2-sec-butylphenyl methyl carbamate) and chlorothalonil. In the biodegradation test of two pesticides by the modified river die-away method from June 17 to August 22, 1998, the biodegradation rate constants and half-life were determined in Nakdong(A) and Kumho River(B). Bio- degradation rate of BPMC was 27% in A sampling point, 40% in B sampling point after 7 days. Biodegradation rate constants and half-life of BPMC were 0.0460 and 15.1 days in A sampling point, 0.0749 and 9.3 days in B sampling point, respectively. Biodegradation rate of chlorothalonil was 100% in A and B sampling points after 7 days. Biodegradation rate constants and half-life of chlorothalonil were 0.1416 and 4.9 hours in A sampling point, 0.1803 and 3.8 hours in B sampling point, respectively. Biodegradation rate of chlorothalonil was faster than that of BPMC. Correlation analysis between biodegradation rate constants of pesticides and water quality(DO, BOD, SS, ABS, NH₃-N and NO₃-N) showed significant correlation with BOD, SS and NH,-N. Furthermore, regression analysis with BOD, SS and NH₃-N as independent variable and biodegradation rate constant as independent variable showed a significant linear equation. These results suggested that BPMC and chlorothalonil were mainly degraded by biodegradation, and the difference in biodegradation of two pesticides was due to difference of water quality.

      • KCI우수등재

        BPMC, Carbaryl 및 Chiorothalonil의 상호작용이 Carassius auratus(goldfish)를 이용한 단기간 생물농축계수의 측정에 미치는 영향

        민경진,차춘근,전봉식,김근배 한국환경보건학회 1997 한국환경보건학회지 Vol.23 No.2

        This study was performed to investigate the effect of co-existence of BPMC, carbaryl and chlorothalonil on the short-term bioconcentration factor in Carassius auratus(goldfish). The fishes were exposed to the combined treatment of BPMC, carbaryl and chlorothalonil (0.05 ppm+0.05 ppm+0.005 ppm, 0.05 ppm+0.05 ppm+0.010 ppm, 0.05 ppm+0.10 ppm+0.005 ppm, 0.10 ppm+0.05 ppm+0.005 ppm, 0.10 ppm+0.10 ppm+0.005 ppm) for 3 and 5 days, respectively. BPMC, carbaryl and chlorothalonil in fish and in test water were extracted with n-hexane and acetonitrile. GC-ECD was used to detect and quantitate BPMC, carbaryl and chlorothalonil. 3-day and 5-day bioconcentration factors(BCF$_3$ and BCF$_5$) of each pesticide were calculated from the quantitation results. The depuration rate of each pesticide-from the whole body of fish was determined over the 72-h period after combined treatment.The results were as follows: BCF$_3$ values of BPMC were 4.163, 4.011, 4.122, 4.750 and 4.842 when the concentration of BPMC+ carbaryl+chlorothalonil in combined treatment were 0.05 ppm+0.05 ppm+0.005 ppm, 0.05 ppm+0.05 ppm+0.010 ppm, 0.05 ppm+0.10 ppm+0.005 ppm, 0.10 ppm+0.05 ppm+0.005 ppm and 0.10 ppm+ 0.10 ppm+0.005 ppm. BCF$_5$ values of BPMC were 3.465, 3.270, 3.472, 3.162, 4.227 and 4.157, respectively, under the above conditions. While BCF$_3$ values of carbaryl were 4.583, 4.642, 4.571, 3. 637 and 3.529, respectively, and BCF$_5$ values of carbaryl were 3.932, 3.797, 3.843, 4.293 and 4.132, respectively, under the conditions. While BCF$_3$ values of chlorothalonil were 2.024, 3.532, 2.213, 2.157 and 2.271, respectively, and BCF$_5$ of chlorothalonil were 6.712, 7.013, 6.457, 6.694 and 6.597, respectively, under the conditions. Depuration rate constants of BPMC were 0.019, 0.018, 0.020, 0.022 and 0.021 when the concentration of BPMC+carbaryl+chlorothalonil in combined treatment were the same as above. And depuration rate constants of carbaryl were 0.030, 0.029, 0.030, 0.029 and 0.031, respectively, under the same condition of pesticide mixtures. While depuration rate constants of chlorothalonil were 0.004, 0.004, 0.003, 0.004 and 0.003, respectively, under the same condition. It was observed that no significant differences of BCFs and concentrations of the compounds in fish extracts, test water between combined treatment and single treatment. It was considered that no appreciable interaction at experimental concentrations was due to low concentrations, near environmental level, 0.005-0.1 ppm. Coexistence of BPMC, carbaryl and chlorothalonil had no effect on depuration rate of each pesticide and depuration rate of chlorothalonil was investigated 1/8 and 1/6 slower than those of carbaryl and BPMC in combined treatment. It is similar result in comparison with single treatment. Therefore, it is considered that the persistence of chlorothalonil in fish body would be higher than those of carbaryl and BPMC.

      • KCI우수등재

        단기간 생물농축계수의 측정에 있어서 실험어류의 종에 따른 차이

        민경진,차춘근,전봉식,김근배 한국환경보건학회 1998 한국환경보건학회지 Vol.24 No.1

        This study was performed to investigate the difference in species of test fish on the determination of short-term bioconcentration factor in zebrafish(Brachydanio rerio), red sword tail(Xiphophorus hellieri) and goldfish(Carassius auratus). Experimental concentrations of carbamates were 0.05 and 0.10 ppm and chlorothalonil were 0.005 and 0.01 ppm for 3 and 5 days, respectively. This paper reports the measured BCF value on pesticides in various species of test fish, under steady state, and examined correlation between the BCF value and depuration rate constant or LC$_{50}$ or lipid content. Carbamates and chlorothalonil concentration in fish extract and BCF of carbamate and chlorothalonil were increased as incresing test concentration. Carbamates concentration in fish extract and BCF of carbamate were decreased as incresing test period, but chlorothalonil concentration in fish extract and BCF of chlorothalonil were increased as prolonging test period. Determined pesticide concentration in fish extract and BCF were highest in red sword tail, and followed by goldfish, and zebrafish. Determined depuration rate constant were highest in zebrafish, and followed by goldfish, and red sword tail. 96hr-LC$_{50}$ were highest in red sword tail, and followed by zebrafish, and goldfish. Lipid compositions were highest in red sword tail, and followed by goldfish, and zebrafish. Therefore, it is suggested that the difference of BCF between each pesticide due to those of lipid composition of fish and deputation rate constant, while LC$_{50}$ have no effect on BCF.

      • KCI등재

        일부 유기인계 농약의 광분해성

        민경진,차춘근 한국식품위생안전성학회 1999 한국식품위생안전성학회지 Vol.14 No.4

        The present study was performed to investigate photodegradation rate constants and degradation products of dichlorvos and methidathion by the USEPA method. The two pesticides were very stable in sunlight for 16 days from September 2 to 18, 1998 and humic acid had no sensitizing effect on the photolysis of each pesticide in sunlight. The photolysis rate was fastest for methidathion, followed by dichlorvos in the presence of UV irradiation. Photodegradation rate constant and half-life of dichlorvos were 0.0208 and 33.3 min, respectively. Photodegradation rate constant and half-life of methidathion were 0.6789 and 1.0min, respectively. The two pesticides were degraded completely in the presence of UV irradiation and UV irradiation with TiO₂ in about 3 hours. Therefore, it is suggested that UV treatment will be effective for the degradation of pesticides in the process of drinking water purification. In case of dichlorvos and methidathion, UV irradiation with TiO₂ was more effective for degradation than UV irradiation. In order to identify photolysis products, the extracts of degradation products were analyzed by GC/ MS. The mass spectrum of photolysis products of dichlorvos was at m/z 153, those of the photolysis of methidathion were at m/z 198 and 214, respectively. Photolysis products of dichlorvos was O, O-dimethyl phosphate(DMP), those of methidathion were O, O-dimethyl phosphorothioate(DMTP) and O, O-dimethyl phosphorodithioate (DMDTP).

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼