RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        항공 통신 기술 : AeroMACS 시스템을 위한 동기화기 설계

        장수현 ( Sooh Yun Jang ),이은상 ( Eun Sang Lee ),정윤호 ( Yunho Jung ) 한국항행학회 2014 韓國航行學會論文誌 Vol.18 No.2

        본 논문에서는 항공관제통신용 AeroMACS 시스템을 위한 시간/주파수 동기 획득 및 기지국 셀탐색 알고리즘을 분석하고, AeroMACS 채널 모델에서 동기 알고리즘의 성능 평가를 진행하였다, 그리고, 상기 알고리즘을 이용한 AeroMACS 시스템용 동기화기를 설계 및 구현하였다. AeroMACS 시스템은 IEEE 802.16e mobile WiMAX 규격에 기반 된 시스템이나, WiMAX 시스템과 달리 5GHz 항공 주파수 대역에서 5MHz의 대역폭을 활용하여 통신을 수행한다. 변경된 사양에 따른 시스템 모델링 후에 apron (APR), runway (RWY), taxiway (TWY), park (PRK) 등 다양한 공항 환경에 대한 채널 모델에 기반하여 시간 및 주파수 동기 알고리즘 및 셀 탐색 알고리즘의 성능 평가를 수행하였다. 그리고, 이를 FPGA 기반 실시간 구현 및 검증하였다. In this paper, the performance analysis results of time/frequency synchronization and cell search algorithm are presented for aeronautical mobile airport communication systems (AeroMACS). AeroMACS is based on IEEE 802.16e mobile WiMAX standard and uses the aeronautical frequency band of 5GHz with the bandwidth of 5MHz. The simulation model of AeroMACS is designed and the performance evaluation is conducted with the various airport channel models such as apron (APR), runway (RWY), taxiway (TWY), and park (PRK). The proposed synchronization unit was designed in hardware description language (HDL) and implemented on FPGA. Also, the real-time operation was verified and evaluated using FPGA test system.

      • KCI등재

        기반 기술 : 개선된 LR-WPAN 시스템을 위한 시간 동기부 설계

        박민철 ( Min Cheol Park ),이동찬 ( Dong Chan Lee ),장수현 ( Sooh Yun Jang ),정윤호 ( Yun Ho Jung ) 한국항행학회 2014 韓國航行學會論文誌 Vol.18 No.5

        최근 다양한 센서를 활용하는 응용분야의 증가로, 가변전송률을 지원하는 무선 통신 시스템의 필요성이 증가하고 있다. 이를 위해 2.45 GHz 주파수 대역을 사용하는 IEEE 802.15.4 LR-WPAN 시스템이 보편적으로 활용되고 있으나, LR-WPAN 시스템은 250 kbps의 단일 전송률만을 지원하고 있어 다양한 센서 네트워크 시스템에 응용되기에는 한계가 존재한다. 따라서, 본 논문에서는 31.25 kbps, 62.5 kbps, 125 kbps의 가변 전송률을 지원할 수 있는 프리앰블 구조를 정의하고, 주파수 오프셋에 강인한 이중 상관 알고리즘을 기반으로 저복잡도 특성을 갖는 시간 동기부의 하드웨어 구조를 설계하였다. 제안된 시간 동기부는 18.36 K의 logic slices 및 4개의 DSP48s로 합성되었으며, 기존의 구조 대비 각각 79.1%와 99.4%의 감소를 보였다. Recently, with the growth of various sensor applications, the need of wireless communication systems which can support variable data rate is increasing. IEEE 802.15.4 LR-WPAN system using 2.45 GHz frequency band is very popular for the sensor applications. However, since LR-WPAN only supports the data rate of 250 kbps, it has a limit to be applied to various sensor networks. Therefore, we define the preamble structure which can support the data rates of 31.25 kbps, 62.5 kbps, 125 kbps, and present the low-complexity hardware architecture for time synchronizer based on double-correlation algorithm which can resist the CFO (carrier frequency offset). Implementation results show that the proposed time synchronizer include the logic slice of 18.36 K and four DSP48s, which are reduced at the rate of 79.1% and 99.4%, respectively, compared with existing architecture.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼