RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        수산화광물(水酸化鑛物)인 수골석(水滑石), Xonotlite, 활석(滑石), 투각섬석(透角閃石) 및 Antigorite의 열수합성(熱水合成)

        박홍봉,Park, Hong Bong 대한자원환경지질학회 1980 자원환경지질 Vol.13 No.1

        Dolomite and quartz, starting materials, were mixed by the mole ratio of dolomite versus quartz with 1 : 0, 1 : 1, and 2 : 1, and of which was heated under saturated water vapor pressure of $20kg/cm^2(211.4^{\circ}C)$, $80kg/cm^2(293.6/C)$ and $120kg/cm^2(323.1^{\circ}C)$, respectively, during 20 hours. The results of the hydrothermal syntheses are as follows: 1) calcite crystals were formed at all cases of the reation 2) brucite crystals were formed when dolomite was heated under the saturated vapor pressure of $80kg/cm^2$ during 20 hours. 3) talc, tremolite, xonotlite, and antigorite were formed under saturated vapor pressure of $80kg/cm^2$ by 20 hours reaction.

      • KCI등재

        고내화도(高耐火度) 광석광물(鑛石鑛物)의 분포(分布)와 성인(成因)에 관(關)한 연구(硏究) -전남지역(全南地域)을 중심(中心)으로-

        박홍봉,권숙문,박배영,신상은,Park, Hong Bong,Kwon, Sook Moon,Park, Bae Young,Sin, Sang Eun 대한자원환경지질학회 1982 자원환경지질 Vol.15 No.2

        Several mines in Jeonnam produce the ores of having high SK number of refractoriness. Among those for 5 mines, this paper deals with the relationahip between SK number and mineral composition of the ore, and with the genesis of the deposits. 1. Byok-Song and Chon-Un Mine: Mineral compositions of the ores are chiastolite, chloritoid(monoclinic), kaolinite, sericite, diaspore, corundum, and quartz. The ores having SK number of 36 or 37, consist chiefly of chiastolite and diaspore and a little amount of kaolinite, sericite, corundum, chloritoid, and quartz. The ores having SK number of 33 or 34 consist of chloritoid, sericite, kaolinite, chiastolite, and diaspore. With increasing the amount of chloritoid and sericite, and decreasing the amount of diaspore and chiastolite, the SK number of the ores decreases. The deposit, originally high alumina-bearing shale of Chon-Un San formation, seems to be formed by contact metamorphism(forming of chiastolite), regional metamorphism(forming of monoclinic chloritoid), and hydrothermal replacement(forming of large crystal of diaspore veinlets). 2. Song-Sauk Mine: Mineral compositions of the ores are chiefly pyrophyllite and quartz and a little amount of kaolinite, dickite, diaspore, and pyrite. Many spherical inclusions containing in pyrophyllite deposits, consist chiefly of diaspore and kaolinite, The inclusions have the high SK number of 38. Amount of spherical inclusions is about 5 % to the whole pyrophyllite ores. The SK number of other pyrophyllite ore is less than 32. Quartz and pyrite are chief minerals lowering the SK number of the ore. The deposits have been formed by hydrothermal processes by replacing the siliceous tuff of Mesozoic age. Spherical inclusions consisting of diaspore and kaolinite, show the selective replacement of hydrothermal solutions to the materials of feldspar in tuff. 3. Seung-San Mine: Mineral compositions of the ores are chiefly kaolinite, dickite, diaspore, and quartz. But some part of the mine consists of alunite deposits. The ores having SK number of 35 or higher consist chiefly of kaolinite and diaspore and a little amount of quartz. With increasing the amount of quartz and decresing the amount of diaspore, the SK number of the ore decreases. The deposits have been formed by hydrothermal processes by replacing the siliceous tuff and quartz porphyry. 4. Wan-Do Mine: Mineral compositions of the ores are chiefly pyrophyllite and quartz. But some ore contains a little amount of diaspore, kaolinite, pyrite, and chloritoid. The ores having high SK number of 36 consist chiefly of diaspore and pyrophyllite. Pyrophyllite ore has a SK number of 32 or lower. Amount of quartz and pyrite decreases the SK number of ores in this mine. Rhyolite was replaced by the action of hydrothermal solutions forming the pyrophyllite deposits.

      • KCI등재

        전남(全南)과 하동지역(河東地域)에서 산출(産出)하는 요업(窯業) 및 점토(粘土) 광물자원(鑛物資源)과 성인(成因)에 관(關)한 연구(硏究)

        박홍봉,박배영,신상은,허민,Park, Hong Bong,Park, Bae Young,Shin, Sang Eun,Huh, Min 대한자원환경지질학회 1988 자원환경지질 Vol.21 No.1

        This is a study on the mineral compositions, SK numbers of refractoriness and the genesis of the clay mineral deposits in Cheonnam Province and Handong area. 1. Jindo kaolin deposits: Chief clay minerals of the deposits are kaolinite, quartz and alunite. The SK number of the ore is from $34^+$(the highest) to 27(the lowest). On the genesis of the deposits some geologists believe that the deposits were formed by the alteration of the siliceous tuff. But the deposits seems to be formed by the hydrothermal alteration of the rhyolite lava beds. This area is formed by alternative beds of tuff; and kaoline deposits. 2. Hadong area: Chief mineralogy of Hadong kaolin area is $10{\AA}$ halloysite and kaolinite. The SK number of some of the ore is up to $36^+$. The theoretic SK number of kaolinitic composition is 35. So one of the highest alumina minerals of gibbsite is formed in the ores of $36^+$ SK numbers. 3. Hampyong kaolin deposits: Most of kaolin has black color. The chief minerals are kaolinite, quartz and muscovite. Some of the kaoline contains rutile crystals. SK number ranges from 30 to 17. The kaolin deposit is formed by the transported sedimentation in lower part of the seashore. 4. Jangsan kaoline deposits: Chief minerals of the kaolin is kaolinite, quartz and muscovite. Some kaoline contains small crystals of pyrite. This area consists almost of the tuffs. Kaolin deposits also would be formed by the alteration of the tuffs. 5. Nohwado pyrophyllite deposits: Quartz and pyrophyllite are chief minerals. SK number of the ore ranges from 32 to 30. The pyrophyllite deposits would be formed by the hydrothermal alteration of the rhyolitic lava beds. This area consists of alterative beds of tuffs and rhyolitic lavas. 6. Songsuk pyrophyllite deposits: Chief minerals are quartz, kaolinite, pyrophyllite and iron oxides. In the pyrophyllite deposits egg-like inclusions of diaspore and kaolinite in composition. This area almost consists of tuffs. Several faults are developed and along the fault the tuff would begin to alter to pyrophyllite and some parts to diaspore and kaolinite nodules by the acts of hydrothermal solution.

      • KCI등재

        全南과 河東地域에서 産出하는 窯業 및 粘土 鑛物資源과 成因에 關한 硏究

        Hong Bong Park(朴鴻鳳),Bae Young Park(朴培榮),Sang Eun Shin(申相垠),Min Huh(許民) 대한자원환경지질학회 1988 자원환경지질 Vol.21 No.1

        This is a study on the mineral compositions, SK numbers of refractoriness and the genesis of the clay mineral deposits in Cheonnam Province and Handong area. 1. Jindo kaolin deposits : Chief clay minerals of the deposits are kaolinite, quartz and alunite. The SK number of the ore is from 34⁺(the highest) to 27(the lowest). On the genesis of the deposits some geologists believe that the deposits were formed by the alteration of the siliceous tuff. But the deposits seems to be formed by the hydrothermal alteration of the rhyolite lava beds. This area is formed by alternative beds of tuffs and kaoline deposits. 2. Hadong area : Chief mineralogy of Hadong kaolin area is 10A halloysite and kaolinite. The SK number of some of the ore is up to 36⁺. The theoretic SK number of kaolinitic composition is 35. So one of the highest alumina minerals of gibbsite is formed in the ores of 36⁺ SK numbers. 3. Hampyong kaolin deposits : Most of kaolin has black color. The chief minerals are kaolinite, quartz and muscovite. Some of the kaoline contains rutile crystals. SK number ranges from 30 to 17. The kaolin deposit is formed by the transported sedimentation in lower part of the seashore. 4. Jangsan kaoline deposits : Chief minerals of the kaolin is kaolinite, quartz and muscovite. Some kaoline contains small crystals of pyrite. This area consists almost of the tuffs Kaolin deposits also would be formed by the alteration of the tuffs. 5. Nohwado pyrophyllite deposits : Quartz and pyrophyllite are chief minerals. SK number of the ore ranges from 32 to 30. The pyrophyllite deposits would be formed by the hydrothermal alteration of the rhyolitic lava beds. This area consists of alterative beds of tuffs and rhyolitic lavas. 6. Songsuk pyrophyllite deposits : Chief minerals are quartz, kaolinite, pyrophyllite and iron oxides. In the pyrophyllite deposits egg-like inclusions of diaspore and kaolinite in composition. This area almost consists of tuffs. Several faults are developed and along the fault the tuff would begin to alter to pyrophyllite and some parts to diaspore and kaolinite nodules by the acts of hydrothermal solution.

      • KCI등재

        水酸化鑛物인 水滑石, Xonotlite, 滑石, 透角閃石 및 Antigorite의 熱水合成

        Hong Bong Park(朴鴻鳳) 대한자원환경지질학회 1980 자원환경지질 Vol.13 No.1

        Dolomite and quartz, starting materials, were mixed by the mole ratio of dolomite versus quartz with 1 : 0, 1 : 1, and 2 : 1, and of which was heated under saturated water vapor pressure of 20kg/cm²(211.4℃), 80kg/cm²(293.6/C) and 120kg/cm²(323.1℃), respectively, during 20 hours. The results of the hydrothermal syntheses are as follows: 1) calcite crystals were formed at all cases of the reation 2) brucite crystals were formed when dolomite was heated under the saturated vapor pressure of 80kg/cm² during 20 hours. 3) talc, tremolite, xonotlite, and antigorite were formed under saturated vapor pressure of 80kg/cm² by 20 hours reaction.

      • KCI등재

        高耐火度 鑛石鑛物 의 分布 와 成因 에 關한 硏究 : 全南地域 을 中心으로

        Hong Bong Park(朴鴻鳳),Sook Moon Kwon(權肅汶),Bae Young Park(朴培榮),Sang Eun Sin(申相垠) 대한자원환경지질학회 1982 자원환경지질 Vol.15 No.2

        Several mines in Jeonnam produce the ores of having high SK number of refractoriness. Among those for 5 mines, this paper deals with the relationahip between SK number and mineral composition of the ore, and with the genesis of the deposits. 1. Byok-Song and Chon-Un Mine : Mineral compositions of the ores are chiastolite, chloritoid(monoclinic), kaolinite, sericite, diaspore, corundum, and quartz. The ores having SK number of 36 or 37, consist chiefly of chiastolite and diaspore and a little amount of kaolinite, sericite, corundum, chloritoid, and quartz. The ores having SK number of 33 or 34 consist of chloritoid, sericite, kaolinite, chiastolite, and diaspore. With increasing the amount of chloritoid and sericite, and decreasing the amount of diaspore and chiastolite, the SK number of the ores decreases. The deposit, originally high alumina-bearing shale of Chon-Un San formation, seems to be formed by contact metamorphism(forming of chiastolite), regional metamorphism(forming of monoclinic chloritoid), and hydrothermal replacement(forming of large crystal of diaspore veinlets). 2. Song-Sauk Mine : Mineral compositions of the ores are chiefly pyrophyllite and quartz and a little amount of kaolinite, dickite, diaspore, and pyrite. Many spherical inclusions containing in pyrophyllite deposits, consist chiefly of diaspore and kaolinite, The inclusions have the high SK number of 38. Amount of spherical inclusions is about 5 % to the whole pyrophyllite ores. The SK number of other pyrophyllite ore is less than 32. Quartz and pyrite are chief minerals lowering the SK number of the ore. The deposits have been formed by hydrothermal processes by replacing the siliceous tuff of Mesozoic age. Spherical inclusions consisting of diaspore and kaolinite, show the selective replacement of hydrothermal solutions to the materials of feldspar in tuff. 3. Seung-San Mine : Mineral compositions of the ores are chiefly kaolinite, dickite, diaspore, and quartz. But some part of the mine consists of alunite deposits. The ores having SK number of 35 or higher consist chiefly of kaolinite and diaspore and a little amount of quartz. With increasing the amount of quartz and decresing the amount of diaspore, the SK number of the ore decreases. The deposits have been formed by hydrothermal processes by replacing the siliceous tuff and quartz porphyry. 4. Wan-Do Mine : Mineral compositions of the ores are chiefly pyrophyllite and quartz. But some ore contains a little amount of diaspore, kaolinite, pyrite, and chloritoid. The ores having high SK number of 36 consist chiefly of diaspore and pyrophyllite. Pyrophyllite ore has a SK number of 32 or lower. Amount of quartz and pyrite decreases the SK number of ores in this mine. Rhyolite was replaced by the action of hydrothermal solutions forming the pyrophyllite deposits.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼